L(s) = 1 | + (−0.841 + 0.540i)3-s + (1.21 + 2.65i)5-s + (4.41 − 1.29i)7-s + (0.415 − 0.909i)9-s + (2.35 + 2.72i)11-s + (−4.82 − 1.41i)13-s + (−2.45 − 1.57i)15-s + (0.108 − 0.753i)17-s + (−0.368 − 2.56i)19-s + (−3.01 + 3.47i)21-s + (4.04 + 2.57i)23-s + (−2.31 + 2.66i)25-s + (0.142 + 0.989i)27-s + (0.0209 − 0.145i)29-s + (6.55 + 4.21i)31-s + ⋯ |
L(s) = 1 | + (−0.485 + 0.312i)3-s + (0.542 + 1.18i)5-s + (1.66 − 0.490i)7-s + (0.138 − 0.303i)9-s + (0.710 + 0.820i)11-s + (−1.33 − 0.392i)13-s + (−0.634 − 0.407i)15-s + (0.0262 − 0.182i)17-s + (−0.0844 − 0.587i)19-s + (−0.657 + 0.758i)21-s + (0.843 + 0.537i)23-s + (−0.462 + 0.533i)25-s + (0.0273 + 0.190i)27-s + (0.00389 − 0.0270i)29-s + (1.17 + 0.756i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.547 - 0.836i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.547 - 0.836i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.39882 + 0.756650i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.39882 + 0.756650i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.841 - 0.540i)T \) |
| 23 | \( 1 + (-4.04 - 2.57i)T \) |
good | 5 | \( 1 + (-1.21 - 2.65i)T + (-3.27 + 3.77i)T^{2} \) |
| 7 | \( 1 + (-4.41 + 1.29i)T + (5.88 - 3.78i)T^{2} \) |
| 11 | \( 1 + (-2.35 - 2.72i)T + (-1.56 + 10.8i)T^{2} \) |
| 13 | \( 1 + (4.82 + 1.41i)T + (10.9 + 7.02i)T^{2} \) |
| 17 | \( 1 + (-0.108 + 0.753i)T + (-16.3 - 4.78i)T^{2} \) |
| 19 | \( 1 + (0.368 + 2.56i)T + (-18.2 + 5.35i)T^{2} \) |
| 29 | \( 1 + (-0.0209 + 0.145i)T + (-27.8 - 8.17i)T^{2} \) |
| 31 | \( 1 + (-6.55 - 4.21i)T + (12.8 + 28.1i)T^{2} \) |
| 37 | \( 1 + (3.02 - 6.63i)T + (-24.2 - 27.9i)T^{2} \) |
| 41 | \( 1 + (-0.0578 - 0.126i)T + (-26.8 + 30.9i)T^{2} \) |
| 43 | \( 1 + (9.96 - 6.40i)T + (17.8 - 39.1i)T^{2} \) |
| 47 | \( 1 - 2.01T + 47T^{2} \) |
| 53 | \( 1 + (1.71 - 0.502i)T + (44.5 - 28.6i)T^{2} \) |
| 59 | \( 1 + (5.62 + 1.65i)T + (49.6 + 31.8i)T^{2} \) |
| 61 | \( 1 + (4.95 + 3.18i)T + (25.3 + 55.4i)T^{2} \) |
| 67 | \( 1 + (-9.74 + 11.2i)T + (-9.53 - 66.3i)T^{2} \) |
| 71 | \( 1 + (-5.91 + 6.83i)T + (-10.1 - 70.2i)T^{2} \) |
| 73 | \( 1 + (0.115 + 0.804i)T + (-70.0 + 20.5i)T^{2} \) |
| 79 | \( 1 + (8.02 + 2.35i)T + (66.4 + 42.7i)T^{2} \) |
| 83 | \( 1 + (-3.60 + 7.88i)T + (-54.3 - 62.7i)T^{2} \) |
| 89 | \( 1 + (14.2 - 9.14i)T + (36.9 - 80.9i)T^{2} \) |
| 97 | \( 1 + (-0.896 - 1.96i)T + (-63.5 + 73.3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.89887383031979152310849127769, −10.17742814533235783977752054795, −9.479518334612365391330546347345, −8.095880092023705099232223546397, −7.15422663942297827361806455676, −6.57730397989229893261125160264, −5.05500248577448617605366468074, −4.63926908564125567631886198332, −2.99143844410983697535683234144, −1.63945713621890983732005337829,
1.14872757900150498295216483994, 2.18929994260018109364435839492, 4.35163917838570163743371726000, 5.11893902963248254743446162152, 5.75941825959522225823424956388, 7.03525405303676640108649115462, 8.215382596490582655891783473558, 8.710606149847899795016380358527, 9.666743368236664619882509466093, 10.81339562511394528948488223290