L(s) = 1 | + (1.07 + 0.914i)2-s − 3-s + (0.327 + 1.97i)4-s + 0.969·5-s + (−1.07 − 0.914i)6-s + 4.55·7-s + (−1.45 + 2.42i)8-s + 9-s + (1.04 + 0.886i)10-s − 0.915i·11-s + (−0.327 − 1.97i)12-s − 4.49i·13-s + (4.91 + 4.16i)14-s − 0.969·15-s + (−3.78 + 1.29i)16-s + 5.37i·17-s + ⋯ |
L(s) = 1 | + (0.762 + 0.646i)2-s − 0.577·3-s + (0.163 + 0.986i)4-s + 0.433·5-s + (−0.440 − 0.373i)6-s + 1.72·7-s + (−0.513 + 0.858i)8-s + 0.333·9-s + (0.330 + 0.280i)10-s − 0.276i·11-s + (−0.0944 − 0.569i)12-s − 1.24i·13-s + (1.31 + 1.11i)14-s − 0.250·15-s + (−0.946 + 0.322i)16-s + 1.30i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.335 - 0.942i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.335 - 0.942i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.84693 + 1.30276i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.84693 + 1.30276i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.07 - 0.914i)T \) |
| 3 | \( 1 + T \) |
| 23 | \( 1 + (-4.70 + 0.937i)T \) |
good | 5 | \( 1 - 0.969T + 5T^{2} \) |
| 7 | \( 1 - 4.55T + 7T^{2} \) |
| 11 | \( 1 + 0.915iT - 11T^{2} \) |
| 13 | \( 1 + 4.49iT - 13T^{2} \) |
| 17 | \( 1 - 5.37iT - 17T^{2} \) |
| 19 | \( 1 + 0.688iT - 19T^{2} \) |
| 29 | \( 1 - 6.35iT - 29T^{2} \) |
| 31 | \( 1 - 5.64iT - 31T^{2} \) |
| 37 | \( 1 - 3.25T + 37T^{2} \) |
| 41 | \( 1 + 8.87T + 41T^{2} \) |
| 43 | \( 1 + 9.54iT - 43T^{2} \) |
| 47 | \( 1 - 0.156iT - 47T^{2} \) |
| 53 | \( 1 + 2.42T + 53T^{2} \) |
| 59 | \( 1 - 3.81T + 59T^{2} \) |
| 61 | \( 1 + 12.2T + 61T^{2} \) |
| 67 | \( 1 + 10.6iT - 67T^{2} \) |
| 71 | \( 1 + 14.9iT - 71T^{2} \) |
| 73 | \( 1 + 8.18T + 73T^{2} \) |
| 79 | \( 1 - 12.0T + 79T^{2} \) |
| 83 | \( 1 - 11.1iT - 83T^{2} \) |
| 89 | \( 1 + 10.9iT - 89T^{2} \) |
| 97 | \( 1 + 17.8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.92809094810186884522842280869, −10.53547048367413266425574484966, −8.810663289348982984808924988964, −8.140940561939992932241243060205, −7.30087537185412046835634352236, −6.14869564735571717805892644887, −5.31335747580195636984929428277, −4.76731934653766506900521258760, −3.40460697625821036603479704700, −1.72955678998440822940271841342,
1.37505016837529767434357951767, 2.38552531313115233810826924573, 4.23915666422915899069295500479, 4.83478513815118037414467562971, 5.68623952869349984454677995232, 6.76946098303243757508927932851, 7.78994144540811362411616354012, 9.206855697525950469288377928029, 9.885647882672828567058238034041, 11.00473209452695582573827670000