L(s) = 1 | + (−0.734 + 1.20i)2-s + (−1.73 + 0.0302i)3-s + (−0.919 − 1.77i)4-s − 0.871·5-s + (1.23 − 2.11i)6-s − 3.09i·7-s + (2.82 + 0.193i)8-s + (2.99 − 0.104i)9-s + (0.640 − 1.05i)10-s + 1.90i·11-s + (1.64 + 3.04i)12-s + 1.23i·13-s + (3.73 + 2.27i)14-s + (1.50 − 0.0263i)15-s + (−2.30 + 3.26i)16-s + 1.98i·17-s + ⋯ |
L(s) = 1 | + (−0.519 + 0.854i)2-s + (−0.999 + 0.0174i)3-s + (−0.459 − 0.887i)4-s − 0.389·5-s + (0.504 − 0.863i)6-s − 1.16i·7-s + (0.997 + 0.0683i)8-s + (0.999 − 0.0348i)9-s + (0.202 − 0.333i)10-s + 0.573i·11-s + (0.475 + 0.879i)12-s + 0.343i·13-s + (0.998 + 0.607i)14-s + (0.389 − 0.00679i)15-s + (−0.576 + 0.816i)16-s + 0.480i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 - 0.0509i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.998 - 0.0509i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.00520999 + 0.204316i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00520999 + 0.204316i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.734 - 1.20i)T \) |
| 3 | \( 1 + (1.73 - 0.0302i)T \) |
| 23 | \( 1 - T \) |
good | 5 | \( 1 + 0.871T + 5T^{2} \) |
| 7 | \( 1 + 3.09iT - 7T^{2} \) |
| 11 | \( 1 - 1.90iT - 11T^{2} \) |
| 13 | \( 1 - 1.23iT - 13T^{2} \) |
| 17 | \( 1 - 1.98iT - 17T^{2} \) |
| 19 | \( 1 + 4.96T + 19T^{2} \) |
| 29 | \( 1 - 2.31T + 29T^{2} \) |
| 31 | \( 1 + 3.48iT - 31T^{2} \) |
| 37 | \( 1 - 4.56iT - 37T^{2} \) |
| 41 | \( 1 - 8.71iT - 41T^{2} \) |
| 43 | \( 1 + 3.26T + 43T^{2} \) |
| 47 | \( 1 + 7.68T + 47T^{2} \) |
| 53 | \( 1 + 7.53T + 53T^{2} \) |
| 59 | \( 1 - 12.2iT - 59T^{2} \) |
| 61 | \( 1 - 10.7iT - 61T^{2} \) |
| 67 | \( 1 + 0.0562T + 67T^{2} \) |
| 71 | \( 1 + 7.84T + 71T^{2} \) |
| 73 | \( 1 + 7.04T + 73T^{2} \) |
| 79 | \( 1 + 5.10iT - 79T^{2} \) |
| 83 | \( 1 - 0.795iT - 83T^{2} \) |
| 89 | \( 1 - 17.3iT - 89T^{2} \) |
| 97 | \( 1 - 9.05T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.97871245245473948453930922480, −10.27240392909219561436364932212, −9.655885810292083110393144505864, −8.320319295323061584491174856941, −7.47709740170193321774313894813, −6.74118372596372436067748312101, −6.00425345494566206515680284080, −4.63990285546402189668663057236, −4.15682635631258952590080495368, −1.43063944508947910680365007687,
0.16765982231645026226183185441, 1.97462817917382705109877234058, 3.36993519899815277105935896318, 4.62650621741363915921015839035, 5.60934643989648396725126739616, 6.70880108869148768018368445195, 7.899593498549619905744806636353, 8.713627929686465370964828015636, 9.603205073434371941163512724142, 10.57460479054544051334931917151