Properties

Label 2-550-5.4-c1-0-5
Degree $2$
Conductor $550$
Sign $0.894 - 0.447i$
Analytic cond. $4.39177$
Root an. cond. $2.09565$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s + i·3-s − 4-s + 6-s + i·7-s + i·8-s + 2·9-s − 11-s i·12-s + 2i·13-s + 14-s + 16-s + 3i·17-s − 2i·18-s + 19-s + ⋯
L(s)  = 1  − 0.707i·2-s + 0.577i·3-s − 0.5·4-s + 0.408·6-s + 0.377i·7-s + 0.353i·8-s + 0.666·9-s − 0.301·11-s − 0.288i·12-s + 0.554i·13-s + 0.267·14-s + 0.250·16-s + 0.727i·17-s − 0.471i·18-s + 0.229·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(550\)    =    \(2 \cdot 5^{2} \cdot 11\)
Sign: $0.894 - 0.447i$
Analytic conductor: \(4.39177\)
Root analytic conductor: \(2.09565\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{550} (199, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 550,\ (\ :1/2),\ 0.894 - 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.33805 + 0.315872i\)
\(L(\frac12)\) \(\approx\) \(1.33805 + 0.315872i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
5 \( 1 \)
11 \( 1 + T \)
good3 \( 1 - iT - 3T^{2} \)
7 \( 1 - iT - 7T^{2} \)
13 \( 1 - 2iT - 13T^{2} \)
17 \( 1 - 3iT - 17T^{2} \)
19 \( 1 - T + 19T^{2} \)
23 \( 1 - 6iT - 23T^{2} \)
29 \( 1 - 9T + 29T^{2} \)
31 \( 1 - 5T + 31T^{2} \)
37 \( 1 + 5iT - 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 - 8iT - 43T^{2} \)
47 \( 1 + 6iT - 47T^{2} \)
53 \( 1 - 9iT - 53T^{2} \)
59 \( 1 + 6T + 59T^{2} \)
61 \( 1 - 5T + 61T^{2} \)
67 \( 1 + 8iT - 67T^{2} \)
71 \( 1 + 9T + 71T^{2} \)
73 \( 1 + 10iT - 73T^{2} \)
79 \( 1 + 14T + 79T^{2} \)
83 \( 1 + 6iT - 83T^{2} \)
89 \( 1 - 15T + 89T^{2} \)
97 \( 1 + 8iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.70052935863693205582412608707, −10.08249976273010348228620565460, −9.319854329964202764286319839755, −8.463749577853724317391471207347, −7.37042880314954080290418005632, −6.12329181017474829968448083531, −4.95841472221385591412573262785, −4.13532968303152766448208274082, −3.01684704977875269560812752016, −1.57408299339195360315909896913, 0.896359628440551867678730090357, 2.74837020184173054437806877058, 4.27887363484550370919956388633, 5.16987592127404206622876614398, 6.46125834300147038564548383913, 7.02366628534888717609421395882, 7.951039987261469923004506691235, 8.642158841752548457605784681454, 9.980048753757673560965407634009, 10.40484017622222170638886349028

Graph of the $Z$-function along the critical line