| L(s) = 1 | + (−13.8 + 13.8i)3-s + 32i·4-s + (48.0 + 28.5i)5-s − 140. i·9-s − 401.·11-s + (−442. − 442. i)12-s + (−1.06e3 + 271. i)15-s − 1.02e3·16-s + (−912 + 1.53e3i)20-s + (1.99e3 − 1.99e3i)23-s + (1.50e3 + 2.74e3i)25-s + (−1.42e3 − 1.42e3i)27-s − 7.35e3·31-s + (5.55e3 − 5.55e3i)33-s + 4.48e3·36-s + (7.66e3 + 7.66e3i)37-s + ⋯ |
| L(s) = 1 | + (−0.887 + 0.887i)3-s + i·4-s + (0.860 + 0.509i)5-s − 0.576i·9-s − 1.00·11-s + (−0.887 − 0.887i)12-s + (−1.21 + 0.311i)15-s − 16-s + (−0.509 + 0.860i)20-s + (0.787 − 0.787i)23-s + (0.480 + 0.877i)25-s + (−0.375 − 0.375i)27-s − 1.37·31-s + (0.887 − 0.887i)33-s + 0.576·36-s + (0.921 + 0.921i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0185i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.0185i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(3)\) |
\(\approx\) |
\(0.00892556 - 0.959981i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.00892556 - 0.959981i\) |
| \(L(\frac{7}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 + (-48.0 - 28.5i)T \) |
| 11 | \( 1 + 401.T \) |
| good | 2 | \( 1 - 32iT^{2} \) |
| 3 | \( 1 + (13.8 - 13.8i)T - 243iT^{2} \) |
| 7 | \( 1 - 1.68e4iT^{2} \) |
| 13 | \( 1 + 3.71e5iT^{2} \) |
| 17 | \( 1 - 1.41e6iT^{2} \) |
| 19 | \( 1 + 2.47e6T^{2} \) |
| 23 | \( 1 + (-1.99e3 + 1.99e3i)T - 6.43e6iT^{2} \) |
| 29 | \( 1 + 2.05e7T^{2} \) |
| 31 | \( 1 + 7.35e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + (-7.66e3 - 7.66e3i)T + 6.93e7iT^{2} \) |
| 41 | \( 1 - 1.15e8T^{2} \) |
| 43 | \( 1 + 1.47e8iT^{2} \) |
| 47 | \( 1 + (-2.11e4 - 2.11e4i)T + 2.29e8iT^{2} \) |
| 53 | \( 1 + (6.66e3 - 6.66e3i)T - 4.18e8iT^{2} \) |
| 59 | \( 1 - 4.73e4iT - 7.14e8T^{2} \) |
| 61 | \( 1 - 8.44e8T^{2} \) |
| 67 | \( 1 + (3.18e4 + 3.18e4i)T + 1.35e9iT^{2} \) |
| 71 | \( 1 + 6.62e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 2.07e9iT^{2} \) |
| 79 | \( 1 + 3.07e9T^{2} \) |
| 83 | \( 1 + 3.93e9iT^{2} \) |
| 89 | \( 1 - 9.10e4iT - 5.58e9T^{2} \) |
| 97 | \( 1 + (-3.76e4 - 3.76e4i)T + 8.58e9iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.07599136520066529446306432804, −13.59041376854581935311465881156, −12.58550078953130478324592457830, −11.16007211575933167700853925739, −10.44809324729893950189435982432, −9.145166513384579021897552131720, −7.47958120468085375775936831234, −5.92659161993122784020127345261, −4.59785915703742243021769629018, −2.78832256560050963407393932376,
0.51353528424857197713019073309, 1.88084474258109118464182466984, 5.21036468498612630645065562287, 5.89011433969331129648823448050, 7.19935782064137758785701602019, 9.106849533811250561300834339886, 10.32718121200992618957336514724, 11.38713021230586649525019152477, 12.80001397938308977001417922736, 13.44450160843466266420681290553