Properties

Label 8-55e4-1.1-c3e4-0-0
Degree $8$
Conductor $9150625$
Sign $1$
Analytic cond. $110.895$
Root an. cond. $1.80141$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16·3-s + 128·9-s − 128·16-s + 216·23-s − 74·25-s + 592·27-s + 868·37-s − 72·47-s − 2.04e3·48-s + 1.47e3·53-s − 832·67-s + 3.45e3·69-s + 2.44e3·71-s − 1.18e3·75-s − 78·81-s + 68·97-s − 2.34e3·103-s + 1.38e4·111-s − 4.28e3·113-s + 2.66e3·121-s + 127-s + 131-s + 137-s + 139-s − 1.15e3·141-s − 1.63e4·144-s + 149-s + ⋯
L(s)  = 1  + 3.07·3-s + 4.74·9-s − 2·16-s + 1.95·23-s − 0.591·25-s + 4.21·27-s + 3.85·37-s − 0.223·47-s − 6.15·48-s + 3.82·53-s − 1.51·67-s + 6.02·69-s + 4.09·71-s − 1.82·75-s − 0.106·81-s + 0.0711·97-s − 2.24·103-s + 11.8·111-s − 3.56·113-s + 2·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s − 0.688·141-s − 9.48·144-s + 0.000549·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9150625 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9150625 ^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(9150625\)    =    \(5^{4} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(110.895\)
Root analytic conductor: \(1.80141\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 9150625,\ (\ :3/2, 3/2, 3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(7.109706118\)
\(L(\frac12)\) \(\approx\) \(7.109706118\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_2^2$ \( 1 + 74 T^{2} + p^{6} T^{4} \)
11$C_2$ \( ( 1 - p^{3} T^{2} )^{2} \)
good2$C_2$ \( ( 1 - p^{2} T + p^{3} T^{2} )^{2}( 1 + p^{2} T + p^{3} T^{2} )^{2} \)
3$C_2$$\times$$C_2^2$ \( ( 1 - 8 T + p^{3} T^{2} )^{2}( 1 + 10 T^{2} + p^{6} T^{4} ) \)
7$C_2^2$ \( ( 1 + p^{6} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + p^{6} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + p^{6} T^{4} )^{2} \)
19$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
23$C_2$$\times$$C_2^2$ \( ( 1 - 108 T + p^{3} T^{2} )^{2}( 1 - 12670 T^{2} + p^{6} T^{4} ) \)
29$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
31$C_2^2$ \( ( 1 + 56018 T^{2} + p^{6} T^{4} )^{2} \)
37$C_2$$\times$$C_2^2$ \( ( 1 - 434 T + p^{3} T^{2} )^{2}( 1 + 87050 T^{2} + p^{6} T^{4} ) \)
41$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + p^{6} T^{4} )^{2} \)
47$C_2$$\times$$C_2^2$ \( ( 1 + 36 T + p^{3} T^{2} )^{2}( 1 - 206350 T^{2} + p^{6} T^{4} ) \)
53$C_2$$\times$$C_2^2$ \( ( 1 - 738 T + p^{3} T^{2} )^{2}( 1 + 246890 T^{2} + p^{6} T^{4} ) \)
59$C_2$ \( ( 1 - 720 T + p^{3} T^{2} )^{2}( 1 + 720 T + p^{3} T^{2} )^{2} \)
61$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
67$C_2$$\times$$C_2^2$ \( ( 1 + 416 T + p^{3} T^{2} )^{2}( 1 - 428470 T^{2} + p^{6} T^{4} ) \)
71$C_2$ \( ( 1 - 612 T + p^{3} T^{2} )^{4} \)
73$C_2^2$ \( ( 1 + p^{6} T^{4} )^{2} \)
79$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + p^{6} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 1392338 T^{2} + p^{6} T^{4} )^{2} \)
97$C_2$$\times$$C_2^2$ \( ( 1 - 34 T + p^{3} T^{2} )^{2}( 1 - 1824190 T^{2} + p^{6} T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.80202025866611705450800240344, −10.69701681766516781198101206465, −9.950840444882754937550589140967, −9.704207867856288971683154936283, −9.550721084115330526260482703222, −9.198586970421434548627355019533, −8.888210704110760354256284006288, −8.866827352528231100260621137280, −8.344144672474436215240966711005, −8.092629321399285943733370139222, −7.72075572202395053313864480591, −7.55154191761109222397095255468, −7.00017714089702681497529406841, −6.72123278264878267161151112493, −6.50076156725777977573451644176, −5.49786431894925936180304482010, −5.48921593299088296705941566786, −4.45200529896011079006936054124, −4.33689676640315213165640614361, −3.95462466167787870723331052035, −3.30037732998850853676709861136, −2.80875081885556970428058747606, −2.35467146084737596663313835140, −2.27968823903062374872360117555, −1.02868986916054655025195082081, 1.02868986916054655025195082081, 2.27968823903062374872360117555, 2.35467146084737596663313835140, 2.80875081885556970428058747606, 3.30037732998850853676709861136, 3.95462466167787870723331052035, 4.33689676640315213165640614361, 4.45200529896011079006936054124, 5.48921593299088296705941566786, 5.49786431894925936180304482010, 6.50076156725777977573451644176, 6.72123278264878267161151112493, 7.00017714089702681497529406841, 7.55154191761109222397095255468, 7.72075572202395053313864480591, 8.092629321399285943733370139222, 8.344144672474436215240966711005, 8.866827352528231100260621137280, 8.888210704110760354256284006288, 9.198586970421434548627355019533, 9.550721084115330526260482703222, 9.704207867856288971683154936283, 9.950840444882754937550589140967, 10.69701681766516781198101206465, 10.80202025866611705450800240344

Graph of the $Z$-function along the critical line