L(s) = 1 | − 3.15i·2-s − 3.03·3-s − 5.98·4-s − 2.23·5-s + 9.57i·6-s − 5.67i·7-s + 6.26i·8-s + 0.187·9-s + 7.06i·10-s + (10.8 + 1.76i)11-s + 18.1·12-s − 17.2i·13-s − 17.9·14-s + 6.77·15-s − 4.13·16-s + 3.43i·17-s + ⋯ |
L(s) = 1 | − 1.57i·2-s − 1.01·3-s − 1.49·4-s − 0.447·5-s + 1.59i·6-s − 0.810i·7-s + 0.783i·8-s + 0.0208·9-s + 0.706i·10-s + (0.987 + 0.160i)11-s + 1.51·12-s − 1.32i·13-s − 1.27·14-s + 0.451·15-s − 0.258·16-s + 0.202i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.987 - 0.160i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.987 - 0.160i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0524093 + 0.648606i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0524093 + 0.648606i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + 2.23T \) |
| 11 | \( 1 + (-10.8 - 1.76i)T \) |
good | 2 | \( 1 + 3.15iT - 4T^{2} \) |
| 3 | \( 1 + 3.03T + 9T^{2} \) |
| 7 | \( 1 + 5.67iT - 49T^{2} \) |
| 13 | \( 1 + 17.2iT - 169T^{2} \) |
| 17 | \( 1 - 3.43iT - 289T^{2} \) |
| 19 | \( 1 + 18.5iT - 361T^{2} \) |
| 23 | \( 1 - 15.7T + 529T^{2} \) |
| 29 | \( 1 - 52.6iT - 841T^{2} \) |
| 31 | \( 1 - 27.5T + 961T^{2} \) |
| 37 | \( 1 + 40.1T + 1.36e3T^{2} \) |
| 41 | \( 1 + 74.8iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 9.72iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 18.2T + 2.20e3T^{2} \) |
| 53 | \( 1 + 75.2T + 2.80e3T^{2} \) |
| 59 | \( 1 - 1.75T + 3.48e3T^{2} \) |
| 61 | \( 1 + 48.5iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 35.4T + 4.48e3T^{2} \) |
| 71 | \( 1 - 110.T + 5.04e3T^{2} \) |
| 73 | \( 1 - 50.7iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 12.7iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 112. iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 66.3T + 7.92e3T^{2} \) |
| 97 | \( 1 - 65.1T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.08998033146808571239278284980, −12.78387897470019522927957467807, −12.01967405071014108208869125902, −10.95538893274815877676355169457, −10.47565313283654609101839998342, −8.898168309271132704801085445848, −6.91474974857973089272406105728, −4.94518977783743698785110658354, −3.41922756034138270855533848218, −0.75953697274151190696236735053,
4.56537548038038301890701215711, 5.94978472258891478801654859894, 6.68508629409699528286438462545, 8.236092520293217724592927859845, 9.353872410422999849485830620812, 11.42397156280521576884081938410, 12.06093753548128649441764114182, 13.87677511339273139340924650512, 14.81097953249470112329216744191, 15.83203851648257569917798894645