Properties

Label 2-5488-1.1-c1-0-80
Degree $2$
Conductor $5488$
Sign $1$
Analytic cond. $43.8219$
Root an. cond. $6.61981$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.54·3-s + 1.76·5-s + 3.49·9-s + 3.24·11-s + 0.155·13-s + 4.49·15-s + 0.784·17-s − 6.00·19-s + 3.80·23-s − 1.89·25-s + 1.25·27-s − 1.80·29-s + 4.59·31-s + 8.27·33-s + 0.137·37-s + 0.396·39-s + 3.05·41-s + 12.5·43-s + 6.16·45-s − 6.72·47-s + 1.99·51-s + 12.3·53-s + 5.72·55-s − 15.3·57-s + 13.8·59-s + 6.42·61-s + 0.274·65-s + ⋯
L(s)  = 1  + 1.47·3-s + 0.788·5-s + 1.16·9-s + 0.979·11-s + 0.0431·13-s + 1.16·15-s + 0.190·17-s − 1.37·19-s + 0.792·23-s − 0.378·25-s + 0.242·27-s − 0.334·29-s + 0.824·31-s + 1.44·33-s + 0.0225·37-s + 0.0634·39-s + 0.476·41-s + 1.91·43-s + 0.918·45-s − 0.980·47-s + 0.280·51-s + 1.69·53-s + 0.772·55-s − 2.02·57-s + 1.80·59-s + 0.822·61-s + 0.0340·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5488\)    =    \(2^{4} \cdot 7^{3}\)
Sign: $1$
Analytic conductor: \(43.8219\)
Root analytic conductor: \(6.61981\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5488,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.391859572\)
\(L(\frac12)\) \(\approx\) \(4.391859572\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - 2.54T + 3T^{2} \)
5 \( 1 - 1.76T + 5T^{2} \)
11 \( 1 - 3.24T + 11T^{2} \)
13 \( 1 - 0.155T + 13T^{2} \)
17 \( 1 - 0.784T + 17T^{2} \)
19 \( 1 + 6.00T + 19T^{2} \)
23 \( 1 - 3.80T + 23T^{2} \)
29 \( 1 + 1.80T + 29T^{2} \)
31 \( 1 - 4.59T + 31T^{2} \)
37 \( 1 - 0.137T + 37T^{2} \)
41 \( 1 - 3.05T + 41T^{2} \)
43 \( 1 - 12.5T + 43T^{2} \)
47 \( 1 + 6.72T + 47T^{2} \)
53 \( 1 - 12.3T + 53T^{2} \)
59 \( 1 - 13.8T + 59T^{2} \)
61 \( 1 - 6.42T + 61T^{2} \)
67 \( 1 + 6.39T + 67T^{2} \)
71 \( 1 + 3.65T + 71T^{2} \)
73 \( 1 - 9.95T + 73T^{2} \)
79 \( 1 - 13.8T + 79T^{2} \)
83 \( 1 - 6.37T + 83T^{2} \)
89 \( 1 + 8.24T + 89T^{2} \)
97 \( 1 - 0.163T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.312867626785740725267069031971, −7.58136969994813024900303291029, −6.76168418347052749961214899389, −6.16515065459210448513004003735, −5.26362079584010886851972522339, −4.14338576407482257284170430754, −3.73719977511457760084300380033, −2.59501335097539130093241722153, −2.16352679631667551760745376644, −1.11751731995120687719806507075, 1.11751731995120687719806507075, 2.16352679631667551760745376644, 2.59501335097539130093241722153, 3.73719977511457760084300380033, 4.14338576407482257284170430754, 5.26362079584010886851972522339, 6.16515065459210448513004003735, 6.76168418347052749961214899389, 7.58136969994813024900303291029, 8.312867626785740725267069031971

Graph of the $Z$-function along the critical line