L(s) = 1 | + 0.594i·5-s + 3.48·7-s + 4.83i·11-s + 0.215i·13-s − 1.29·17-s − i·19-s + 4.52·23-s + 4.64·25-s − 9.41i·29-s + 1.22·31-s + 2.07i·35-s − 5.62i·37-s + 0.450·41-s + 0.794i·43-s + 12.1·47-s + ⋯ |
L(s) = 1 | + 0.265i·5-s + 1.31·7-s + 1.45i·11-s + 0.0597i·13-s − 0.314·17-s − 0.229i·19-s + 0.944·23-s + 0.929·25-s − 1.74i·29-s + 0.219·31-s + 0.350i·35-s − 0.924i·37-s + 0.0702·41-s + 0.121i·43-s + 1.77·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.806 - 0.591i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5472 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.806 - 0.591i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.481349435\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.481349435\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 19 | \( 1 + iT \) |
good | 5 | \( 1 - 0.594iT - 5T^{2} \) |
| 7 | \( 1 - 3.48T + 7T^{2} \) |
| 11 | \( 1 - 4.83iT - 11T^{2} \) |
| 13 | \( 1 - 0.215iT - 13T^{2} \) |
| 17 | \( 1 + 1.29T + 17T^{2} \) |
| 23 | \( 1 - 4.52T + 23T^{2} \) |
| 29 | \( 1 + 9.41iT - 29T^{2} \) |
| 31 | \( 1 - 1.22T + 31T^{2} \) |
| 37 | \( 1 + 5.62iT - 37T^{2} \) |
| 41 | \( 1 - 0.450T + 41T^{2} \) |
| 43 | \( 1 - 0.794iT - 43T^{2} \) |
| 47 | \( 1 - 12.1T + 47T^{2} \) |
| 53 | \( 1 - 2.56iT - 53T^{2} \) |
| 59 | \( 1 + 2.75iT - 59T^{2} \) |
| 61 | \( 1 - 7.76iT - 61T^{2} \) |
| 67 | \( 1 - 4.11iT - 67T^{2} \) |
| 71 | \( 1 + 7.82T + 71T^{2} \) |
| 73 | \( 1 - 3.08T + 73T^{2} \) |
| 79 | \( 1 - 10.0T + 79T^{2} \) |
| 83 | \( 1 - 11.6iT - 83T^{2} \) |
| 89 | \( 1 + 13.7T + 89T^{2} \) |
| 97 | \( 1 - 2.08T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.178463887560630219150443225836, −7.37995665690408276947568520227, −7.08594562403703934483369651288, −6.07899718624224030733741930975, −5.18677071403871324466501065410, −4.56406320055728609339074918300, −4.03852985917779768088285030253, −2.64652194249508728770173422669, −2.07664897270179556064475639009, −0.995555346271992234132656914041,
0.816889335827026370783149789324, 1.59010459265188860251965305238, 2.80595995962456670045044133977, 3.53898066248868504611671571680, 4.63015111262905664982633720144, 5.10470164943864096146505070662, 5.81873691857670437791178140318, 6.70204627714296492578261785333, 7.45006021693557081537806568592, 8.247128268717593558071640143943