Properties

Label 2-5472-8.5-c1-0-67
Degree $2$
Conductor $5472$
Sign $-0.129 + 0.991i$
Analytic cond. $43.6941$
Root an. cond. $6.61015$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.04i·5-s + 3.59·7-s + 4.29i·11-s + 1.77i·13-s − 2.86·17-s + i·19-s + 2.74·23-s − 11.3·25-s − 2.29i·29-s − 2.33·31-s − 14.5i·35-s − 8.06i·37-s + 2.85·41-s − 0.241i·43-s − 0.191·47-s + ⋯
L(s)  = 1  − 1.81i·5-s + 1.35·7-s + 1.29i·11-s + 0.491i·13-s − 0.695·17-s + 0.229i·19-s + 0.571·23-s − 2.27·25-s − 0.425i·29-s − 0.418·31-s − 2.45i·35-s − 1.32i·37-s + 0.446·41-s − 0.0368i·43-s − 0.0280·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.129 + 0.991i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5472 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.129 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5472\)    =    \(2^{5} \cdot 3^{2} \cdot 19\)
Sign: $-0.129 + 0.991i$
Analytic conductor: \(43.6941\)
Root analytic conductor: \(6.61015\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5472} (2737, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5472,\ (\ :1/2),\ -0.129 + 0.991i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.030782323\)
\(L(\frac12)\) \(\approx\) \(2.030782323\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 - iT \)
good5 \( 1 + 4.04iT - 5T^{2} \)
7 \( 1 - 3.59T + 7T^{2} \)
11 \( 1 - 4.29iT - 11T^{2} \)
13 \( 1 - 1.77iT - 13T^{2} \)
17 \( 1 + 2.86T + 17T^{2} \)
23 \( 1 - 2.74T + 23T^{2} \)
29 \( 1 + 2.29iT - 29T^{2} \)
31 \( 1 + 2.33T + 31T^{2} \)
37 \( 1 + 8.06iT - 37T^{2} \)
41 \( 1 - 2.85T + 41T^{2} \)
43 \( 1 + 0.241iT - 43T^{2} \)
47 \( 1 + 0.191T + 47T^{2} \)
53 \( 1 + 8.10iT - 53T^{2} \)
59 \( 1 + 4.36iT - 59T^{2} \)
61 \( 1 + 15.3iT - 61T^{2} \)
67 \( 1 + 13.2iT - 67T^{2} \)
71 \( 1 - 7.44T + 71T^{2} \)
73 \( 1 - 9.20T + 73T^{2} \)
79 \( 1 + 8.96T + 79T^{2} \)
83 \( 1 + 1.94iT - 83T^{2} \)
89 \( 1 - 3.24T + 89T^{2} \)
97 \( 1 - 17.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.027654021919584970840838014099, −7.50006446346856813364478492383, −6.57242179422290541836868973993, −5.48994158402561199997534824293, −4.89380771950856799300113596802, −4.55109407548817997238758237710, −3.82564497241690455761309870314, −1.94960356467714905929678777549, −1.84224202543442161418617288640, −0.56009307114104398372159428709, 1.14040269592334438895752644825, 2.37438528701258058263745282096, 2.96544147627196691174192349658, 3.75804075278148107066832579292, 4.70967669215794353949868522832, 5.62526630171408614147288711140, 6.20704921826268267403995175953, 7.04490435356467415747358789800, 7.52265680504617794348745911838, 8.330825275168325029788482160060

Graph of the $Z$-function along the critical line