Properties

Label 2-5472-57.56-c1-0-2
Degree $2$
Conductor $5472$
Sign $-0.578 + 0.815i$
Analytic cond. $43.6941$
Root an. cond. $6.61015$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.77i·5-s − 2.56·7-s + 4.54i·11-s − 4.36i·13-s + 5.78i·17-s + (−1.44 − 4.11i)19-s + 6.51i·23-s − 2.69·25-s − 1.52·29-s − 8.55i·31-s − 7.10i·35-s + 10.9i·37-s − 2.73·41-s − 8.23·43-s − 0.591i·47-s + ⋯
L(s)  = 1  + 1.24i·5-s − 0.967·7-s + 1.37i·11-s − 1.21i·13-s + 1.40i·17-s + (−0.331 − 0.943i)19-s + 1.35i·23-s − 0.538·25-s − 0.282·29-s − 1.53i·31-s − 1.20i·35-s + 1.80i·37-s − 0.427·41-s − 1.25·43-s − 0.0862i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.578 + 0.815i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5472 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.578 + 0.815i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5472\)    =    \(2^{5} \cdot 3^{2} \cdot 19\)
Sign: $-0.578 + 0.815i$
Analytic conductor: \(43.6941\)
Root analytic conductor: \(6.61015\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5472} (1025, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5472,\ (\ :1/2),\ -0.578 + 0.815i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2219689245\)
\(L(\frac12)\) \(\approx\) \(0.2219689245\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + (1.44 + 4.11i)T \)
good5 \( 1 - 2.77iT - 5T^{2} \)
7 \( 1 + 2.56T + 7T^{2} \)
11 \( 1 - 4.54iT - 11T^{2} \)
13 \( 1 + 4.36iT - 13T^{2} \)
17 \( 1 - 5.78iT - 17T^{2} \)
23 \( 1 - 6.51iT - 23T^{2} \)
29 \( 1 + 1.52T + 29T^{2} \)
31 \( 1 + 8.55iT - 31T^{2} \)
37 \( 1 - 10.9iT - 37T^{2} \)
41 \( 1 + 2.73T + 41T^{2} \)
43 \( 1 + 8.23T + 43T^{2} \)
47 \( 1 + 0.591iT - 47T^{2} \)
53 \( 1 + 10.5T + 53T^{2} \)
59 \( 1 - 7.26T + 59T^{2} \)
61 \( 1 - 13.7T + 61T^{2} \)
67 \( 1 - 13.2iT - 67T^{2} \)
71 \( 1 + 12.8T + 71T^{2} \)
73 \( 1 - 11.7T + 73T^{2} \)
79 \( 1 + 2.57iT - 79T^{2} \)
83 \( 1 + 6.17iT - 83T^{2} \)
89 \( 1 - 8.90T + 89T^{2} \)
97 \( 1 + 0.565iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.483557930376115121815880151066, −7.80630902500961518534333097941, −7.06552955952339119038110406894, −6.60060507557125559605535492831, −5.93520479473242608232149558565, −5.06469578488873916467081217021, −4.02064326092027872309545069569, −3.29848241430375639441425274296, −2.66709715194621876510680622902, −1.67647144442076374443729815161, 0.06430430653799741940266370485, 0.995024684896097788972447549183, 2.17745144575457150617658514834, 3.26621856598375674566511835592, 3.92647441653660939906607567759, 4.89251475661028394083878180513, 5.39171291522634918642047139057, 6.44748227997710372101084553142, 6.70659374714901641593669027769, 7.85887671729187450906575039229

Graph of the $Z$-function along the critical line