Properties

Label 2-5472-57.56-c1-0-11
Degree $2$
Conductor $5472$
Sign $0.0290 - 0.999i$
Analytic cond. $43.6941$
Root an. cond. $6.61015$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.06i·5-s − 2.36·7-s − 1.12i·11-s − 4.80i·13-s − 4.69i·17-s + (−3.63 + 2.41i)19-s + 7.88i·23-s + 3.85·25-s − 3.53·29-s − 2.74i·31-s − 2.52i·35-s + 3.24i·37-s − 4.61·41-s + 3.12·43-s + 5.36i·47-s + ⋯
L(s)  = 1  + 0.477i·5-s − 0.892·7-s − 0.340i·11-s − 1.33i·13-s − 1.13i·17-s + (−0.832 + 0.553i)19-s + 1.64i·23-s + 0.771·25-s − 0.656·29-s − 0.493i·31-s − 0.426i·35-s + 0.533i·37-s − 0.720·41-s + 0.476·43-s + 0.782i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0290 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5472 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0290 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5472\)    =    \(2^{5} \cdot 3^{2} \cdot 19\)
Sign: $0.0290 - 0.999i$
Analytic conductor: \(43.6941\)
Root analytic conductor: \(6.61015\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5472} (1025, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5472,\ (\ :1/2),\ 0.0290 - 0.999i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9815372173\)
\(L(\frac12)\) \(\approx\) \(0.9815372173\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + (3.63 - 2.41i)T \)
good5 \( 1 - 1.06iT - 5T^{2} \)
7 \( 1 + 2.36T + 7T^{2} \)
11 \( 1 + 1.12iT - 11T^{2} \)
13 \( 1 + 4.80iT - 13T^{2} \)
17 \( 1 + 4.69iT - 17T^{2} \)
23 \( 1 - 7.88iT - 23T^{2} \)
29 \( 1 + 3.53T + 29T^{2} \)
31 \( 1 + 2.74iT - 31T^{2} \)
37 \( 1 - 3.24iT - 37T^{2} \)
41 \( 1 + 4.61T + 41T^{2} \)
43 \( 1 - 3.12T + 43T^{2} \)
47 \( 1 - 5.36iT - 47T^{2} \)
53 \( 1 + 1.59T + 53T^{2} \)
59 \( 1 - 9.17T + 59T^{2} \)
61 \( 1 - 0.269T + 61T^{2} \)
67 \( 1 - 3.18iT - 67T^{2} \)
71 \( 1 - 16.3T + 71T^{2} \)
73 \( 1 + 13.1T + 73T^{2} \)
79 \( 1 - 7.11iT - 79T^{2} \)
83 \( 1 + 0.310iT - 83T^{2} \)
89 \( 1 + 2.18T + 89T^{2} \)
97 \( 1 + 9.96iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.295837007510817544712736298955, −7.51495138880688557421364154777, −6.99656611820506873697362655551, −6.11182728463154926098466568386, −5.61705830487075544947187936695, −4.76387154630647691690369009791, −3.54342882642779000575715394321, −3.21138979085588588090234081015, −2.30245169847563869478631442664, −0.897777165831054790321025812951, 0.30818954240803115025063581559, 1.70686103773567475644343387392, 2.49085918277056007322320538684, 3.62177712745299693434706834110, 4.30715765024215468886435383380, 4.93838063495729377010252079466, 5.98659120973280490603200187732, 6.68606829146885067624540589177, 6.96827093315915340147359386212, 8.174758253263902459628200807866

Graph of the $Z$-function along the critical line