L(s) = 1 | − 3.62i·5-s − 0.712i·7-s + 3.62·11-s − 3.02·13-s − 5.59i·17-s + i·19-s + 2.37·23-s − 8.14·25-s − 1.44i·29-s − 1.02i·31-s − 2.58·35-s − 3.02·37-s − 2.01i·41-s − 7.78i·43-s − 6.97·47-s + ⋯ |
L(s) = 1 | − 1.62i·5-s − 0.269i·7-s + 1.09·11-s − 0.838·13-s − 1.35i·17-s + 0.229i·19-s + 0.494·23-s − 1.62·25-s − 0.269i·29-s − 0.184i·31-s − 0.436·35-s − 0.497·37-s − 0.314i·41-s − 1.18i·43-s − 1.01·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.985 + 0.169i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5472 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.985 + 0.169i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.378382658\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.378382658\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 19 | \( 1 - iT \) |
good | 5 | \( 1 + 3.62iT - 5T^{2} \) |
| 7 | \( 1 + 0.712iT - 7T^{2} \) |
| 11 | \( 1 - 3.62T + 11T^{2} \) |
| 13 | \( 1 + 3.02T + 13T^{2} \) |
| 17 | \( 1 + 5.59iT - 17T^{2} \) |
| 23 | \( 1 - 2.37T + 23T^{2} \) |
| 29 | \( 1 + 1.44iT - 29T^{2} \) |
| 31 | \( 1 + 1.02iT - 31T^{2} \) |
| 37 | \( 1 + 3.02T + 37T^{2} \) |
| 41 | \( 1 + 2.01iT - 41T^{2} \) |
| 43 | \( 1 + 7.78iT - 43T^{2} \) |
| 47 | \( 1 + 6.97T + 47T^{2} \) |
| 53 | \( 1 - 2.40iT - 53T^{2} \) |
| 59 | \( 1 - 5.80T + 59T^{2} \) |
| 61 | \( 1 + 11.8T + 61T^{2} \) |
| 67 | \( 1 + 5.42iT - 67T^{2} \) |
| 71 | \( 1 + 1.87T + 71T^{2} \) |
| 73 | \( 1 - 5.49T + 73T^{2} \) |
| 79 | \( 1 + 7.07iT - 79T^{2} \) |
| 83 | \( 1 + 5.20T + 83T^{2} \) |
| 89 | \( 1 - 2.68iT - 89T^{2} \) |
| 97 | \( 1 - 12.9T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.78364566976832718256668838237, −7.23767874037490481201546784540, −6.40607160452122964914997604886, −5.43273683669805964951636492797, −4.89779814711489717014719195828, −4.29855349827477136790976879269, −3.44000971845736576625112785225, −2.21574021438263846990918801338, −1.22415884528600108742922121207, −0.37344898734763125636612561571,
1.49433871293300972041524742012, 2.44618063360398784136233647473, 3.21742880183010961216810680406, 3.89178258452401357394299674566, 4.81971289721668585395017394870, 5.87965359250983443731087714022, 6.45845187732756547406844047936, 6.97090326741199005832470931052, 7.62568889185941404492532894487, 8.475670327260018290657309861724