Properties

Label 2-5472-12.11-c1-0-61
Degree $2$
Conductor $5472$
Sign $0.169 + 0.985i$
Analytic cond. $43.6941$
Root an. cond. $6.61015$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.896i·5-s − 4.46i·7-s + 2.96·11-s + 5.46·13-s − 7.20i·17-s i·19-s − 0.378·23-s + 4.19·25-s − 8.48i·29-s + 7.46i·31-s + 4.00·35-s + 9.46·37-s + 2.82i·41-s + 2.26i·43-s − 8.24·47-s + ⋯
L(s)  = 1  + 0.400i·5-s − 1.68i·7-s + 0.894·11-s + 1.51·13-s − 1.74i·17-s − 0.229i·19-s − 0.0790·23-s + 0.839·25-s − 1.57i·29-s + 1.34i·31-s + 0.676·35-s + 1.55·37-s + 0.441i·41-s + 0.345i·43-s − 1.20·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.169 + 0.985i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5472 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.169 + 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5472\)    =    \(2^{5} \cdot 3^{2} \cdot 19\)
Sign: $0.169 + 0.985i$
Analytic conductor: \(43.6941\)
Root analytic conductor: \(6.61015\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5472} (2015, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5472,\ (\ :1/2),\ 0.169 + 0.985i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.272075430\)
\(L(\frac12)\) \(\approx\) \(2.272075430\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + iT \)
good5 \( 1 - 0.896iT - 5T^{2} \)
7 \( 1 + 4.46iT - 7T^{2} \)
11 \( 1 - 2.96T + 11T^{2} \)
13 \( 1 - 5.46T + 13T^{2} \)
17 \( 1 + 7.20iT - 17T^{2} \)
23 \( 1 + 0.378T + 23T^{2} \)
29 \( 1 + 8.48iT - 29T^{2} \)
31 \( 1 - 7.46iT - 31T^{2} \)
37 \( 1 - 9.46T + 37T^{2} \)
41 \( 1 - 2.82iT - 41T^{2} \)
43 \( 1 - 2.26iT - 43T^{2} \)
47 \( 1 + 8.24T + 47T^{2} \)
53 \( 1 + 7.45iT - 53T^{2} \)
59 \( 1 - 3.10T + 59T^{2} \)
61 \( 1 + 7.19T + 61T^{2} \)
67 \( 1 - 4.92iT - 67T^{2} \)
71 \( 1 + 9.52T + 71T^{2} \)
73 \( 1 - 7.92T + 73T^{2} \)
79 \( 1 - 11.4iT - 79T^{2} \)
83 \( 1 + 8.10T + 83T^{2} \)
89 \( 1 + 5.93iT - 89T^{2} \)
97 \( 1 - 10.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.914644234091837645360167450578, −7.16459835958835650912226070396, −6.67505204900689718581189633378, −6.11453132901304983332189004274, −4.88639785529511592730600959441, −4.26521785059978635328904284088, −3.54760936816751887066150563319, −2.82513250788787207599396553104, −1.34950898155935194867390990814, −0.68562284869731598377702873392, 1.25688294926084183973740376178, 1.92890139269900843887235326065, 3.08445801301410375458771341775, 3.83863570883452916377275231103, 4.66146300370382092518786807937, 5.71393196679014872666194443023, 6.04006869127779564177756981809, 6.61110716355223869154224785594, 7.88141621201252493647645091247, 8.465828460856507265797979222385

Graph of the $Z$-function along the critical line