| L(s)  = 1 | + (−0.965 − 0.258i)2-s   + i·3-s   + (0.866 + 0.499i)4-s   + (−0.106 + 0.0285i)5-s   + (0.258 − 0.965i)6-s   + (−1.53 + 2.15i)7-s   + (−0.707 − 0.707i)8-s   − 9-s   + 0.110·10-s   + (−3.35 − 3.35i)11-s   + (−0.499 + 0.866i)12-s   + (−3.58 + 0.403i)13-s   + (2.04 − 1.68i)14-s   + (−0.0285 − 0.106i)15-s   + (0.500 + 0.866i)16-s   + (1.45 − 2.51i)17-s  + ⋯ | 
| L(s)  = 1 | + (−0.683 − 0.183i)2-s   + 0.577i·3-s   + (0.433 + 0.249i)4-s   + (−0.0476 + 0.0127i)5-s   + (0.105 − 0.394i)6-s   + (−0.580 + 0.814i)7-s   + (−0.249 − 0.249i)8-s   − 0.333·9-s   + 0.0349·10-s   + (−1.01 − 1.01i)11-s   + (−0.144 + 0.249i)12-s   + (−0.993 + 0.111i)13-s   + (0.545 − 0.449i)14-s   + (−0.00737 − 0.0275i)15-s   + (0.125 + 0.216i)16-s   + (0.352 − 0.610i)17-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.804 + 0.594i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.804 + 0.594i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(0.0321368 - 0.0976038i\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(0.0321368 - 0.0976038i\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 2 | \( 1 + (0.965 + 0.258i)T \) | 
|  | 3 | \( 1 - iT \) | 
|  | 7 | \( 1 + (1.53 - 2.15i)T \) | 
|  | 13 | \( 1 + (3.58 - 0.403i)T \) | 
| good | 5 | \( 1 + (0.106 - 0.0285i)T + (4.33 - 2.5i)T^{2} \) | 
|  | 11 | \( 1 + (3.35 + 3.35i)T + 11iT^{2} \) | 
|  | 17 | \( 1 + (-1.45 + 2.51i)T + (-8.5 - 14.7i)T^{2} \) | 
|  | 19 | \( 1 + (1.89 + 1.89i)T + 19iT^{2} \) | 
|  | 23 | \( 1 + (-4.62 + 2.67i)T + (11.5 - 19.9i)T^{2} \) | 
|  | 29 | \( 1 + (0.975 - 1.68i)T + (-14.5 - 25.1i)T^{2} \) | 
|  | 31 | \( 1 + (-2.51 + 9.39i)T + (-26.8 - 15.5i)T^{2} \) | 
|  | 37 | \( 1 + (1.97 - 7.37i)T + (-32.0 - 18.5i)T^{2} \) | 
|  | 41 | \( 1 + (6.25 - 1.67i)T + (35.5 - 20.5i)T^{2} \) | 
|  | 43 | \( 1 + (2.18 - 1.26i)T + (21.5 - 37.2i)T^{2} \) | 
|  | 47 | \( 1 + (1.58 + 5.89i)T + (-40.7 + 23.5i)T^{2} \) | 
|  | 53 | \( 1 + (3.68 + 6.38i)T + (-26.5 + 45.8i)T^{2} \) | 
|  | 59 | \( 1 + (0.816 + 3.04i)T + (-51.0 + 29.5i)T^{2} \) | 
|  | 61 | \( 1 - 7.91iT - 61T^{2} \) | 
|  | 67 | \( 1 + (5.73 - 5.73i)T - 67iT^{2} \) | 
|  | 71 | \( 1 + (5.73 + 1.53i)T + (61.4 + 35.5i)T^{2} \) | 
|  | 73 | \( 1 + (5.15 + 1.38i)T + (63.2 + 36.5i)T^{2} \) | 
|  | 79 | \( 1 + (1.92 - 3.32i)T + (-39.5 - 68.4i)T^{2} \) | 
|  | 83 | \( 1 + (-8.03 - 8.03i)T + 83iT^{2} \) | 
|  | 89 | \( 1 + (13.6 + 3.66i)T + (77.0 + 44.5i)T^{2} \) | 
|  | 97 | \( 1 + (3.07 - 11.4i)T + (-84.0 - 48.5i)T^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−10.21090193675891734409287046442, −9.671984998561002310866404839885, −8.783708224358634779041261873957, −8.045891670122851804721462329997, −6.91138006452832073577979176482, −5.78315764744497924081922004075, −4.89009276797430279281116265085, −3.24993554822011558377896856432, −2.49302621264752345996075906336, −0.06867135741752078458867884843, 
1.76315347178214178628664558679, 3.10398439193897137028460375181, 4.66818635759680361135374822287, 5.85563550454499684131941390183, 7.02271627756790592328350815510, 7.45545823010781878645878041404, 8.304648572778125083690956728069, 9.523868323805337889143544484662, 10.22192280625314669059066700238, 10.82016119758004149712649233639
