| L(s) = 1 | + i·2-s + (−0.5 − 0.866i)3-s − 4-s + (3.28 − 1.89i)5-s + (0.866 − 0.5i)6-s + (2.13 − 1.55i)7-s − i·8-s + (−0.499 + 0.866i)9-s + (1.89 + 3.28i)10-s + (0.483 − 0.279i)11-s + (0.5 + 0.866i)12-s + (−2.73 − 2.35i)13-s + (1.55 + 2.13i)14-s + (−3.28 − 1.89i)15-s + 16-s − 6.05·17-s + ⋯ |
| L(s) = 1 | + 0.707i·2-s + (−0.288 − 0.499i)3-s − 0.5·4-s + (1.46 − 0.848i)5-s + (0.353 − 0.204i)6-s + (0.808 − 0.589i)7-s − 0.353i·8-s + (−0.166 + 0.288i)9-s + (0.599 + 1.03i)10-s + (0.145 − 0.0841i)11-s + (0.144 + 0.249i)12-s + (−0.758 − 0.652i)13-s + (0.416 + 0.571i)14-s + (−0.848 − 0.489i)15-s + 0.250·16-s − 1.46·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.793 + 0.608i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.793 + 0.608i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.50933 - 0.512577i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.50933 - 0.512577i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 - iT \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + (-2.13 + 1.55i)T \) |
| 13 | \( 1 + (2.73 + 2.35i)T \) |
| good | 5 | \( 1 + (-3.28 + 1.89i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.483 + 0.279i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + 6.05T + 17T^{2} \) |
| 19 | \( 1 + (3.65 + 2.10i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 5.66T + 23T^{2} \) |
| 29 | \( 1 + (-1.93 + 3.34i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-5.96 - 3.44i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 9.24iT - 37T^{2} \) |
| 41 | \( 1 + (3.99 + 2.30i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-6.47 - 11.2i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (5.18 - 2.99i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.70 + 11.6i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 2.64iT - 59T^{2} \) |
| 61 | \( 1 + (1.78 - 3.09i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-10.2 + 5.92i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (4.58 - 2.64i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (2.29 + 1.32i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.38 - 7.60i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 6.48iT - 83T^{2} \) |
| 89 | \( 1 + 5.45iT - 89T^{2} \) |
| 97 | \( 1 + (-4.64 + 2.68i)T + (48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.56855742105943870667637753499, −9.734601291254367358745159262483, −8.743927066414906569390891375781, −8.122080843825482478883704541341, −6.84206641782251815396439648975, −6.27557063695420854754467671683, −4.97297244962891685229379460515, −4.74213082458307926930533297984, −2.38132085443985327350758261061, −1.02104317080090384442113876974,
1.94882872639124819241529399980, 2.61695314302403205358655929333, 4.29177271596715723879542968882, 5.20448015931744344702716220957, 6.15803659383075558741679436383, 7.09330613590821116276411398754, 8.793877947395656729212107482533, 9.208528271498875293421797847069, 10.24555677792367434795978123415, 10.77356696963162974544608574365