| L(s) = 1 | − i·2-s + (0.5 + 0.866i)3-s − 4-s + (0.620 − 0.358i)5-s + (0.866 − 0.5i)6-s + (−1.94 + 1.78i)7-s + i·8-s + (−0.499 + 0.866i)9-s + (−0.358 − 0.620i)10-s + (2.22 − 1.28i)11-s + (−0.5 − 0.866i)12-s + (3.57 + 0.467i)13-s + (1.78 + 1.94i)14-s + (0.620 + 0.358i)15-s + 16-s + 0.0248·17-s + ⋯ |
| L(s) = 1 | − 0.707i·2-s + (0.288 + 0.499i)3-s − 0.5·4-s + (0.277 − 0.160i)5-s + (0.353 − 0.204i)6-s + (−0.736 + 0.676i)7-s + 0.353i·8-s + (−0.166 + 0.288i)9-s + (−0.113 − 0.196i)10-s + (0.671 − 0.387i)11-s + (−0.144 − 0.249i)12-s + (0.991 + 0.129i)13-s + (0.478 + 0.520i)14-s + (0.160 + 0.0924i)15-s + 0.250·16-s + 0.00602·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0386i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0386i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.57110 + 0.0303569i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.57110 + 0.0303569i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + iT \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (1.94 - 1.78i)T \) |
| 13 | \( 1 + (-3.57 - 0.467i)T \) |
| good | 5 | \( 1 + (-0.620 + 0.358i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.22 + 1.28i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 0.0248T + 17T^{2} \) |
| 19 | \( 1 + (-5.98 - 3.45i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 9.39T + 23T^{2} \) |
| 29 | \( 1 + (2.77 - 4.80i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4.92 + 2.84i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 4.17iT - 37T^{2} \) |
| 41 | \( 1 + (-4.54 - 2.62i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (6.37 + 11.0i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.32 + 2.49i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (4.72 - 8.18i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 2.25iT - 59T^{2} \) |
| 61 | \( 1 + (-0.326 + 0.564i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.62 + 0.938i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-7.52 + 4.34i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (13.7 + 7.94i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (0.194 + 0.336i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 8.85iT - 83T^{2} \) |
| 89 | \( 1 + 14.8iT - 89T^{2} \) |
| 97 | \( 1 + (1.78 - 1.03i)T + (48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.88054517778113520128209161542, −9.777328800180447250460404902351, −9.149516937972364199183079250994, −8.680141112961920844794961907212, −7.25494196038135618771308309354, −5.93577115358652804069772852544, −5.19606110306554392116870756901, −3.67480499766173242387914556517, −3.12950531077647994483018014094, −1.47821720146009888914686830739,
1.07116278357664680618666519713, 3.01534754416965105059576603767, 4.06511457477462009139631361609, 5.44355176594182724905557450759, 6.51921142902262717649113779655, 7.04020136387590709688741980498, 7.915297673447350782255018432723, 9.147734835544283300494483962191, 9.528072301702039804966747152965, 10.74973260657412485754130476031