| L(s) = 1 | − i·2-s + (0.5 + 0.866i)3-s − 4-s + (−2.34 + 1.35i)5-s + (0.866 − 0.5i)6-s + (1.65 − 2.06i)7-s + i·8-s + (−0.499 + 0.866i)9-s + (1.35 + 2.34i)10-s + (−4.41 + 2.54i)11-s + (−0.5 − 0.866i)12-s + (0.313 + 3.59i)13-s + (−2.06 − 1.65i)14-s + (−2.34 − 1.35i)15-s + 16-s − 5.73·17-s + ⋯ |
| L(s) = 1 | − 0.707i·2-s + (0.288 + 0.499i)3-s − 0.5·4-s + (−1.04 + 0.604i)5-s + (0.353 − 0.204i)6-s + (0.627 − 0.778i)7-s + 0.353i·8-s + (−0.166 + 0.288i)9-s + (0.427 + 0.740i)10-s + (−1.33 + 0.768i)11-s + (−0.144 − 0.249i)12-s + (0.0868 + 0.996i)13-s + (−0.550 − 0.443i)14-s + (−0.604 − 0.348i)15-s + 0.250·16-s − 1.39·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.394 - 0.918i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.394 - 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.312512 + 0.474236i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.312512 + 0.474236i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + iT \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (-1.65 + 2.06i)T \) |
| 13 | \( 1 + (-0.313 - 3.59i)T \) |
| good | 5 | \( 1 + (2.34 - 1.35i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (4.41 - 2.54i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + 5.73T + 17T^{2} \) |
| 19 | \( 1 + (3.79 + 2.19i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 7.46T + 23T^{2} \) |
| 29 | \( 1 + (4.18 - 7.24i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (6.21 + 3.58i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 6.77iT - 37T^{2} \) |
| 41 | \( 1 + (-3.29 - 1.90i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.10 - 5.38i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (7.44 - 4.29i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-3.60 + 6.24i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 6.47iT - 59T^{2} \) |
| 61 | \( 1 + (-2.32 + 4.02i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.25 + 3.03i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.792 + 0.457i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-5.93 - 3.42i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3.81 + 6.60i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 15.3iT - 83T^{2} \) |
| 89 | \( 1 + 10.3iT - 89T^{2} \) |
| 97 | \( 1 + (8.20 - 4.73i)T + (48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.11901969500587507552390545662, −10.54478201580486561984497905373, −9.394818990522004614373981133406, −8.532960127229662277164971800252, −7.53687496637132490153333630788, −6.88530512428058742332300920175, −4.86404455728406449040973260008, −4.41359974428833981841423645526, −3.32099198791523849061676769852, −2.09663465265701728166494637766,
0.30299746939185432956876707004, 2.44547401757216040483785278640, 3.88702057298882541158470276989, 5.10468523048639139143766031270, 5.78533580675331451730283960416, 7.15071329855684693748030004351, 8.035450817725814357834221648622, 8.417135080818796661815446223318, 9.117127711357585636798977570397, 10.76828444546844033084747078363