L(s) = 1 | + (−1.37 + 0.350i)2-s + (1.88 − 1.88i)3-s + (1.75 − 0.960i)4-s + 4.17i·5-s + (−1.92 + 3.24i)6-s + (−0.584 − 0.242i)7-s + (−2.06 + 1.93i)8-s − 4.09i·9-s + (−1.46 − 5.71i)10-s + (2.20 + 2.20i)11-s + (1.49 − 5.11i)12-s + (−1.68 + 4.07i)13-s + (0.885 + 0.126i)14-s + (7.86 + 7.86i)15-s + (2.15 − 3.36i)16-s + (4.03 + 0.869i)17-s + ⋯ |
L(s) = 1 | + (−0.968 + 0.247i)2-s + (1.08 − 1.08i)3-s + (0.877 − 0.480i)4-s + 1.86i·5-s + (−0.784 + 1.32i)6-s + (−0.220 − 0.0914i)7-s + (−0.730 + 0.682i)8-s − 1.36i·9-s + (−0.462 − 1.80i)10-s + (0.665 + 0.665i)11-s + (0.431 − 1.47i)12-s + (−0.468 + 1.13i)13-s + (0.236 + 0.0339i)14-s + (2.02 + 2.02i)15-s + (0.538 − 0.842i)16-s + (0.977 + 0.210i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.629 - 0.776i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.629 - 0.776i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.16245 + 0.554149i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.16245 + 0.554149i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.37 - 0.350i)T \) |
| 17 | \( 1 + (-4.03 - 0.869i)T \) |
good | 3 | \( 1 + (-1.88 + 1.88i)T - 3iT^{2} \) |
| 5 | \( 1 - 4.17iT - 5T^{2} \) |
| 7 | \( 1 + (0.584 + 0.242i)T + (4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (-2.20 - 2.20i)T + 11iT^{2} \) |
| 13 | \( 1 + (1.68 - 4.07i)T + (-9.19 - 9.19i)T^{2} \) |
| 19 | \( 1 + (5.12 - 2.12i)T + (13.4 - 13.4i)T^{2} \) |
| 23 | \( 1 + (-1.07 - 0.447i)T + (16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (3.43 + 3.43i)T + 29iT^{2} \) |
| 31 | \( 1 + (-9.82 - 4.06i)T + (21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + 3.39T + 37T^{2} \) |
| 41 | \( 1 + (-2.12 + 5.13i)T + (-28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (-2.33 + 5.63i)T + (-30.4 - 30.4i)T^{2} \) |
| 47 | \( 1 - 7.96T + 47T^{2} \) |
| 53 | \( 1 + (-5.02 - 2.07i)T + (37.4 + 37.4i)T^{2} \) |
| 59 | \( 1 + (1.91 + 0.793i)T + (41.7 + 41.7i)T^{2} \) |
| 61 | \( 1 + 3.64T + 61T^{2} \) |
| 67 | \( 1 + (-0.318 + 0.768i)T + (-47.3 - 47.3i)T^{2} \) |
| 71 | \( 1 + (-2.44 + 1.01i)T + (50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (-14.4 + 5.98i)T + (51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (1.65 + 4.00i)T + (-55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (9.61 - 3.98i)T + (58.6 - 58.6i)T^{2} \) |
| 89 | \( 1 + (-2.20 - 2.20i)T + 89iT^{2} \) |
| 97 | \( 1 + (1.60 - 3.86i)T + (-68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.63929295570880811660950307641, −9.964244411345793126502121871141, −9.098336572008704536811064093582, −8.071823898003161776175062030255, −7.26630926257603085369163379427, −6.83273943040293888651520916195, −6.17675193865764939808503164293, −3.70936427112552262726782276287, −2.54477189296396808119623387358, −1.84447277582214527614547004656,
0.931105853370967528263788174032, 2.67205213772351776891261857250, 3.77746876507431959014315585116, 4.79997738478089974885282509226, 6.00591651629590959105379702456, 7.77053596797984439107691938326, 8.408851015371432261263434516451, 8.937153561621774127905482702450, 9.606526904537298936755366599279, 10.20935925752351799517732199622