| L(s) = 1 | + (−1.87 + 1.87i)3-s + (1 − i)5-s + (−1.18 − 1.18i)7-s − 4.06i·9-s + (3.87 + 3.87i)11-s + 3.06·13-s + 3.75i·15-s + (−1.69 + 3.75i)17-s + 3.75i·19-s + 4.45·21-s + (−3.18 − 3.18i)23-s + 3i·25-s + (2.00 + 2.00i)27-s + (−4.06 + 4.06i)29-s + (−2.94 + 2.94i)31-s + ⋯ |
| L(s) = 1 | + (−1.08 + 1.08i)3-s + (0.447 − 0.447i)5-s + (−0.447 − 0.447i)7-s − 1.35i·9-s + (1.16 + 1.16i)11-s + 0.849·13-s + 0.970i·15-s + (−0.410 + 0.911i)17-s + 0.862i·19-s + 0.971·21-s + (−0.664 − 0.664i)23-s + 0.600i·25-s + (0.384 + 0.384i)27-s + (−0.754 + 0.754i)29-s + (−0.528 + 0.528i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.237 - 0.971i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.237 - 0.971i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.590899 + 0.752442i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.590899 + 0.752442i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 17 | \( 1 + (1.69 - 3.75i)T \) |
| good | 3 | \( 1 + (1.87 - 1.87i)T - 3iT^{2} \) |
| 5 | \( 1 + (-1 + i)T - 5iT^{2} \) |
| 7 | \( 1 + (1.18 + 1.18i)T + 7iT^{2} \) |
| 11 | \( 1 + (-3.87 - 3.87i)T + 11iT^{2} \) |
| 13 | \( 1 - 3.06T + 13T^{2} \) |
| 19 | \( 1 - 3.75iT - 19T^{2} \) |
| 23 | \( 1 + (3.18 + 3.18i)T + 23iT^{2} \) |
| 29 | \( 1 + (4.06 - 4.06i)T - 29iT^{2} \) |
| 31 | \( 1 + (2.94 - 2.94i)T - 31iT^{2} \) |
| 37 | \( 1 + (-2.38 + 2.38i)T - 37iT^{2} \) |
| 41 | \( 1 + (0.389 + 0.389i)T + 41iT^{2} \) |
| 43 | \( 1 - 1.63iT - 43T^{2} \) |
| 47 | \( 1 - 10.1T + 47T^{2} \) |
| 53 | \( 1 - 13.6iT - 53T^{2} \) |
| 59 | \( 1 - 9.88iT - 59T^{2} \) |
| 61 | \( 1 + (-7.12 - 7.12i)T + 61iT^{2} \) |
| 67 | \( 1 + 4T + 67T^{2} \) |
| 71 | \( 1 + (-2.57 + 2.57i)T - 71iT^{2} \) |
| 73 | \( 1 + (6.51 - 6.51i)T - 73iT^{2} \) |
| 79 | \( 1 + (-3.42 - 3.42i)T + 79iT^{2} \) |
| 83 | \( 1 + 13.1iT - 83T^{2} \) |
| 89 | \( 1 - 15.9T + 89T^{2} \) |
| 97 | \( 1 + (1.45 - 1.45i)T - 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.77507267722964254499691078760, −10.33585872850727904002955081955, −9.445367725025174432557889415232, −8.812712832977373763927338246061, −7.22806574553595352443745604306, −6.20177202084446437077734827382, −5.57544353037549708631181884877, −4.27807217771233085149224763317, −3.87265047939511365458164988100, −1.52221503240498150236664846967,
0.68158061468611736175352371980, 2.20118418843896116116426050559, 3.67664906002982264455911023033, 5.36380907625798306458656334704, 6.33078730474736549834963922153, 6.42399018187125665672605135465, 7.62358988757402048158374792634, 8.838888442756973429213358730756, 9.632692264615915036114962307806, 10.99418642263886006501680355197