L(s) = 1 | + (−1.24 − 0.661i)2-s + (1.13 + 2.75i)3-s + (1.12 + 1.65i)4-s + (−3.02 − 1.25i)5-s + (0.395 − 4.19i)6-s + (1.22 + 1.22i)7-s + (−0.311 − 2.81i)8-s + (−4.15 + 4.15i)9-s + (2.94 + 3.56i)10-s + (1.01 − 2.45i)11-s + (−3.26 + 4.97i)12-s + (−5.68 + 2.35i)13-s + (−0.720 − 2.34i)14-s − 9.74i·15-s + (−1.47 + 3.71i)16-s + i·17-s + ⋯ |
L(s) = 1 | + (−0.883 − 0.467i)2-s + (0.658 + 1.58i)3-s + (0.562 + 0.826i)4-s + (−1.35 − 0.559i)5-s + (0.161 − 1.71i)6-s + (0.462 + 0.462i)7-s + (−0.110 − 0.993i)8-s + (−1.38 + 1.38i)9-s + (0.932 + 1.12i)10-s + (0.306 − 0.740i)11-s + (−0.943 + 1.43i)12-s + (−1.57 + 0.653i)13-s + (−0.192 − 0.625i)14-s − 2.51i·15-s + (−0.367 + 0.929i)16-s + 0.242i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.993 + 0.118i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.993 + 0.118i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0202279 - 0.341518i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0202279 - 0.341518i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.24 + 0.661i)T \) |
| 17 | \( 1 - iT \) |
good | 3 | \( 1 + (-1.13 - 2.75i)T + (-2.12 + 2.12i)T^{2} \) |
| 5 | \( 1 + (3.02 + 1.25i)T + (3.53 + 3.53i)T^{2} \) |
| 7 | \( 1 + (-1.22 - 1.22i)T + 7iT^{2} \) |
| 11 | \( 1 + (-1.01 + 2.45i)T + (-7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 + (5.68 - 2.35i)T + (9.19 - 9.19i)T^{2} \) |
| 19 | \( 1 + (0.386 - 0.160i)T + (13.4 - 13.4i)T^{2} \) |
| 23 | \( 1 + (5.00 - 5.00i)T - 23iT^{2} \) |
| 29 | \( 1 + (2.60 + 6.27i)T + (-20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + 1.80T + 31T^{2} \) |
| 37 | \( 1 + (2.25 + 0.933i)T + (26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (1.58 - 1.58i)T - 41iT^{2} \) |
| 43 | \( 1 + (-1.74 + 4.22i)T + (-30.4 - 30.4i)T^{2} \) |
| 47 | \( 1 + 9.11iT - 47T^{2} \) |
| 53 | \( 1 + (2.36 - 5.70i)T + (-37.4 - 37.4i)T^{2} \) |
| 59 | \( 1 + (0.0181 + 0.00751i)T + (41.7 + 41.7i)T^{2} \) |
| 61 | \( 1 + (1.33 + 3.22i)T + (-43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 + (-4.24 - 10.2i)T + (-47.3 + 47.3i)T^{2} \) |
| 71 | \( 1 + (-11.7 - 11.7i)T + 71iT^{2} \) |
| 73 | \( 1 + (10.2 - 10.2i)T - 73iT^{2} \) |
| 79 | \( 1 - 13.3iT - 79T^{2} \) |
| 83 | \( 1 + (8.52 - 3.53i)T + (58.6 - 58.6i)T^{2} \) |
| 89 | \( 1 + (-4.21 - 4.21i)T + 89iT^{2} \) |
| 97 | \( 1 - 1.25T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.38711701557688167437490197831, −10.10650270382132165712260846250, −9.535683880901083359167087174454, −8.646415050473133913502436803160, −8.213504198980729262382656796386, −7.30207562153652490500298446964, −5.36487053546038668056354658101, −4.16807789068388809935026957922, −3.71393897925154255282042215635, −2.34385843776444191714716060738,
0.23008373328614007334098614074, 1.85904721990508385285417219758, 3.01082968803341806865030492490, 4.72317008545098199808359800018, 6.39112936265995933148602207744, 7.24349448093347441633562786699, 7.59133865819940947707906169202, 8.085919113115476545850004227985, 9.157052515883107475684407425871, 10.31920925239101985922227191160