L(s) = 1 | + (−0.433 + 1.04i)3-s + (2.16 + 0.898i)5-s + (3.20 − 1.32i)7-s + (1.21 + 1.21i)9-s + (−2.05 − 4.96i)11-s − 0.828i·13-s + (−1.87 + 1.87i)15-s + (3.79 + 1.60i)17-s + (1.01 − 1.01i)19-s + 3.92i·21-s + (−0.316 − 0.763i)23-s + (0.359 + 0.359i)25-s + (−4.93 + 2.04i)27-s + (−3.47 − 1.43i)29-s + (−3.20 + 7.74i)31-s + ⋯ |
L(s) = 1 | + (−0.250 + 0.603i)3-s + (0.969 + 0.401i)5-s + (1.21 − 0.502i)7-s + (0.405 + 0.405i)9-s + (−0.620 − 1.49i)11-s − 0.229i·13-s + (−0.485 + 0.485i)15-s + (0.921 + 0.389i)17-s + (0.232 − 0.232i)19-s + 0.857i·21-s + (−0.0659 − 0.159i)23-s + (0.0718 + 0.0718i)25-s + (−0.949 + 0.393i)27-s + (−0.644 − 0.267i)29-s + (−0.575 + 1.39i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.895 - 0.445i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.895 - 0.445i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.74892 + 0.410840i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.74892 + 0.410840i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 17 | \( 1 + (-3.79 - 1.60i)T \) |
good | 3 | \( 1 + (0.433 - 1.04i)T + (-2.12 - 2.12i)T^{2} \) |
| 5 | \( 1 + (-2.16 - 0.898i)T + (3.53 + 3.53i)T^{2} \) |
| 7 | \( 1 + (-3.20 + 1.32i)T + (4.94 - 4.94i)T^{2} \) |
| 11 | \( 1 + (2.05 + 4.96i)T + (-7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 + 0.828iT - 13T^{2} \) |
| 19 | \( 1 + (-1.01 + 1.01i)T - 19iT^{2} \) |
| 23 | \( 1 + (0.316 + 0.763i)T + (-16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (3.47 + 1.43i)T + (20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (3.20 - 7.74i)T + (-21.9 - 21.9i)T^{2} \) |
| 37 | \( 1 + (1.37 - 3.32i)T + (-26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (-10.1 + 4.18i)T + (28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (-9.11 - 9.11i)T + 43iT^{2} \) |
| 47 | \( 1 + 3.75iT - 47T^{2} \) |
| 53 | \( 1 + (5.17 - 5.17i)T - 53iT^{2} \) |
| 59 | \( 1 + (5.86 + 5.86i)T + 59iT^{2} \) |
| 61 | \( 1 + (2.27 - 0.943i)T + (43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 + 8.93T + 67T^{2} \) |
| 71 | \( 1 + (5.29 - 12.7i)T + (-50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (1.86 + 0.773i)T + (51.6 + 51.6i)T^{2} \) |
| 79 | \( 1 + (3.56 + 8.60i)T + (-55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (-3.20 + 3.20i)T - 83iT^{2} \) |
| 89 | \( 1 - 0.313iT - 89T^{2} \) |
| 97 | \( 1 + (11.5 + 4.80i)T + (68.5 + 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.76507318630177813990404163255, −10.28734848643693456513254776442, −9.252739902722554514633402248260, −8.120022619999253800452149245378, −7.44393747090689294973115869524, −5.94059458902036491971860989098, −5.39345020715728441085200813687, −4.32922280264581079582625717473, −2.98400430860754142169464081181, −1.46715782620397483139413059360,
1.48103695953062568765854755873, 2.23653251534753730571043111235, 4.27721754679442369717076322092, 5.32184037980524993745883141669, 5.94304651622133292774238894071, 7.40125257838857594868627237931, 7.72387709322936885293343003669, 9.262255572446306166145569565340, 9.627942841050126317542124526393, 10.76467390461862379785612327668