L(s) = 1 | + (−1.00 + 0.992i)2-s + (0.0291 − 1.99i)4-s + (0.493 + 2.18i)5-s + (−1.65 + 2.87i)7-s + (1.95 + 2.04i)8-s + (−2.66 − 1.70i)10-s + (−1.17 + 2.04i)11-s + (3.81 − 2.20i)13-s + (−1.18 − 4.53i)14-s + (−3.99 − 0.116i)16-s − 0.889·17-s − 3.03i·19-s + (4.37 − 0.923i)20-s + (−0.839 − 3.22i)22-s + (−6.29 + 3.63i)23-s + ⋯ |
L(s) = 1 | + (−0.712 + 0.701i)2-s + (0.0145 − 0.999i)4-s + (0.220 + 0.975i)5-s + (−0.626 + 1.08i)7-s + (0.691 + 0.722i)8-s + (−0.841 − 0.539i)10-s + (−0.355 + 0.615i)11-s + (1.05 − 0.610i)13-s + (−0.315 − 1.21i)14-s + (−0.999 − 0.0291i)16-s − 0.215·17-s − 0.696i·19-s + (0.978 − 0.206i)20-s + (−0.179 − 0.688i)22-s + (−1.31 + 0.758i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.986 - 0.162i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.986 - 0.162i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0562198 + 0.688619i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0562198 + 0.688619i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.00 - 0.992i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.493 - 2.18i)T \) |
good | 7 | \( 1 + (1.65 - 2.87i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.17 - 2.04i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-3.81 + 2.20i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 0.889T + 17T^{2} \) |
| 19 | \( 1 + 3.03iT - 19T^{2} \) |
| 23 | \( 1 + (6.29 - 3.63i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.03 + 0.598i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.205 + 0.118i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 11.4iT - 37T^{2} \) |
| 41 | \( 1 + (2.45 - 1.41i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.17 - 7.23i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (6.55 + 3.78i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 0.772T + 53T^{2} \) |
| 59 | \( 1 + (1.06 + 1.84i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.91 + 3.31i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.17 + 5.49i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 11.7T + 71T^{2} \) |
| 73 | \( 1 + 6.10iT - 73T^{2} \) |
| 79 | \( 1 + (-8.94 - 5.16i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (2.25 + 1.29i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 4.68iT - 89T^{2} \) |
| 97 | \( 1 + (5.34 + 3.08i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.04633549064368505068532120305, −10.03486173749567594169073510520, −9.597265679267403302366117164286, −8.490774074153183931657763747762, −7.72736401046402833978221852334, −6.53289067780906607954050980789, −6.12256273551131288108661485900, −5.05271333859201763869464034106, −3.24960696304719735425211292003, −2.01297458781553754904633079697,
0.49540755558242540853056751895, 1.87282540967078559726520008846, 3.61324784511725479291141749251, 4.24086162567241156983817387477, 5.84233565963134730065211303012, 6.92735120363240719300812532033, 8.074721932123125595435367127710, 8.678484171935144466703395308428, 9.603274208137437138356342686321, 10.35879490887463520447478782875