L(s) = 1 | + (1.41 + 0.0449i)2-s + (1.99 + 0.126i)4-s + (1.91 + 1.14i)5-s + (1.44 − 2.50i)7-s + (2.81 + 0.269i)8-s + (2.65 + 1.71i)10-s + (−0.395 + 0.684i)11-s + (−4.04 + 2.33i)13-s + (2.15 − 3.47i)14-s + (3.96 + 0.506i)16-s − 5.89·17-s − 4.55i·19-s + (3.68 + 2.53i)20-s + (−0.589 + 0.950i)22-s + (1.15 − 0.666i)23-s + ⋯ |
L(s) = 1 | + (0.999 + 0.0317i)2-s + (0.997 + 0.0634i)4-s + (0.857 + 0.513i)5-s + (0.546 − 0.945i)7-s + (0.995 + 0.0951i)8-s + (0.841 + 0.540i)10-s + (−0.119 + 0.206i)11-s + (−1.12 + 0.647i)13-s + (0.575 − 0.927i)14-s + (0.991 + 0.126i)16-s − 1.42·17-s − 1.04i·19-s + (0.823 + 0.567i)20-s + (−0.125 + 0.202i)22-s + (0.240 − 0.139i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 - 0.0926i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.995 - 0.0926i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.04877 + 0.141581i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.04877 + 0.141581i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.41 - 0.0449i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.91 - 1.14i)T \) |
good | 7 | \( 1 + (-1.44 + 2.50i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (0.395 - 0.684i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (4.04 - 2.33i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 5.89T + 17T^{2} \) |
| 19 | \( 1 + 4.55iT - 19T^{2} \) |
| 23 | \( 1 + (-1.15 + 0.666i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.29 + 1.32i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.26 + 1.30i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 7.44iT - 37T^{2} \) |
| 41 | \( 1 + (-5.91 + 3.41i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.95 - 10.3i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (2.60 + 1.50i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 1.70T + 53T^{2} \) |
| 59 | \( 1 + (5.29 + 9.17i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.869 - 1.50i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.76 + 6.52i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 2.88T + 71T^{2} \) |
| 73 | \( 1 + 6.50iT - 73T^{2} \) |
| 79 | \( 1 + (3.30 + 1.91i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (8.33 + 4.81i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 0.00741iT - 89T^{2} \) |
| 97 | \( 1 + (-5.74 - 3.31i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.03618567791829230063813555922, −10.17645944382840395395908282356, −9.267152491797051652550503018288, −7.76843776086804964846729059852, −6.92435925294021011865663250539, −6.37348518714210984089939225522, −4.91695157430408502293878651134, −4.44830159780333062124797219720, −2.87116729305930001226295230447, −1.86893422851487591776591693575,
1.86509538080956450431033357567, 2.72110658528253429546587202991, 4.34983742164122399963675880021, 5.32042682199867782182792358559, 5.79046062608588510325838191828, 6.95666956810972003382356473305, 8.103725572819912568335901583216, 9.035635847191370639120763059264, 10.07835520777914374729210150080, 10.93117215882395461981475778194