L(s) = 1 | + (1.38 − 0.288i)2-s + (1.83 − 0.799i)4-s + (−2.23 − 0.145i)5-s + (0.573 − 0.993i)7-s + (2.30 − 1.63i)8-s + (−3.13 + 0.442i)10-s + (0.629 − 1.09i)11-s + (4.39 − 2.53i)13-s + (0.507 − 1.54i)14-s + (2.72 − 2.93i)16-s + 3.29·17-s − 3.62i·19-s + (−4.20 + 1.51i)20-s + (0.556 − 1.69i)22-s + (−3.09 + 1.78i)23-s + ⋯ |
L(s) = 1 | + (0.978 − 0.204i)2-s + (0.916 − 0.399i)4-s + (−0.997 − 0.0650i)5-s + (0.216 − 0.375i)7-s + (0.815 − 0.578i)8-s + (−0.990 + 0.140i)10-s + (0.189 − 0.328i)11-s + (1.21 − 0.704i)13-s + (0.135 − 0.411i)14-s + (0.680 − 0.732i)16-s + 0.799·17-s − 0.831i·19-s + (−0.940 + 0.339i)20-s + (0.118 − 0.360i)22-s + (−0.646 + 0.373i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.589 + 0.807i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.589 + 0.807i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.15938 - 1.09777i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.15938 - 1.09777i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.38 + 0.288i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2.23 + 0.145i)T \) |
good | 7 | \( 1 + (-0.573 + 0.993i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.629 + 1.09i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-4.39 + 2.53i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 3.29T + 17T^{2} \) |
| 19 | \( 1 + 3.62iT - 19T^{2} \) |
| 23 | \( 1 + (3.09 - 1.78i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.184 - 0.106i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (9.12 - 5.26i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 4.72iT - 37T^{2} \) |
| 41 | \( 1 + (5.81 - 3.35i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.41 - 2.45i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (0.925 + 0.534i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 9.12T + 53T^{2} \) |
| 59 | \( 1 + (4.87 + 8.43i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (5.24 - 9.08i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.42 - 12.8i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 9.68T + 71T^{2} \) |
| 73 | \( 1 + 9.08iT - 73T^{2} \) |
| 79 | \( 1 + (-5.78 - 3.34i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.93 - 2.84i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 2.26iT - 89T^{2} \) |
| 97 | \( 1 + (6.69 + 3.86i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.97265950305744231975374586580, −10.20081086206668338955498636502, −8.757640344863475150110179987333, −7.82663926781159514120365292115, −7.01299146736529445553910338310, −5.91042000177066640666035926241, −4.92190145225523560723562284209, −3.80792740721838951058368486861, −3.17510058533536357182488585127, −1.21029143513842297808441592208,
1.89771627917974685579659879685, 3.56015930437224704124949177733, 4.07021656541003115866676652444, 5.34738773293127674676932452201, 6.25997822806175541806944540369, 7.29242202322047029100802778124, 8.051940378116202736218876082764, 8.950167586276419115454811761111, 10.41196324228086467307564783080, 11.22600528777895579426345361650