L(s) = 1 | + (1.25 − 0.645i)2-s + (1.16 − 1.62i)4-s + (1.98 + 1.03i)5-s + (−1.60 + 2.78i)7-s + (0.419 − 2.79i)8-s + (3.16 + 0.0199i)10-s + (1.56 − 2.70i)11-s + (1.59 − 0.923i)13-s + (−0.225 + 4.54i)14-s + (−1.27 − 3.79i)16-s + 5.85·17-s + 2.24i·19-s + (3.99 − 2.01i)20-s + (0.219 − 4.41i)22-s + (−3.24 + 1.87i)23-s + ⋯ |
L(s) = 1 | + (0.889 − 0.456i)2-s + (0.583 − 0.812i)4-s + (0.886 + 0.462i)5-s + (−0.608 + 1.05i)7-s + (0.148 − 0.988i)8-s + (0.999 + 0.00632i)10-s + (0.471 − 0.816i)11-s + (0.443 − 0.256i)13-s + (−0.0602 + 1.21i)14-s + (−0.319 − 0.947i)16-s + 1.41·17-s + 0.514i·19-s + (0.892 − 0.450i)20-s + (0.0467 − 0.941i)22-s + (−0.676 + 0.390i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.874 + 0.484i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.874 + 0.484i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.63413 - 0.681372i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.63413 - 0.681372i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.25 + 0.645i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.98 - 1.03i)T \) |
good | 7 | \( 1 + (1.60 - 2.78i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.56 + 2.70i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.59 + 0.923i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 5.85T + 17T^{2} \) |
| 19 | \( 1 - 2.24iT - 19T^{2} \) |
| 23 | \( 1 + (3.24 - 1.87i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (6.90 + 3.98i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.03 - 0.599i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 2.66iT - 37T^{2} \) |
| 41 | \( 1 + (-0.208 + 0.120i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.66 - 4.61i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (3.96 + 2.28i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 13.0T + 53T^{2} \) |
| 59 | \( 1 + (3.47 + 6.01i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.66 + 2.88i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.31 - 7.48i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 11.3T + 71T^{2} \) |
| 73 | \( 1 - 13.1iT - 73T^{2} \) |
| 79 | \( 1 + (11.6 + 6.72i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (1.07 + 0.623i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 14.3iT - 89T^{2} \) |
| 97 | \( 1 + (5.75 + 3.32i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.92628255338090478406948506502, −9.800159392742322135136577648619, −9.467010772422394257074962666799, −8.060897676548973352737539578309, −6.64521917472401264585262048411, −5.79276882055215448732345065344, −5.54334457064798058541849929458, −3.68911750567376040485185548778, −2.94339058538267833647362860640, −1.66136789040784350639989461629,
1.67758328098285985611129798449, 3.30662401188240522462434330294, 4.28855275156540058251770745429, 5.30285936379109089377239816660, 6.29839645206646241624861869111, 7.02203642751831766895331058718, 7.956836030250620371627982838162, 9.205399312857119673198379491519, 9.989346290128307913293572603542, 10.90653616973232184372804885510