L(s) = 1 | + (1.24 − 0.668i)2-s + (1.10 − 1.66i)4-s + (1.69 − 1.46i)5-s + (0.667 − 1.15i)7-s + (0.265 − 2.81i)8-s + (1.13 − 2.95i)10-s + (−2.18 + 3.78i)11-s + (3.56 − 2.05i)13-s + (0.0591 − 1.88i)14-s + (−1.55 − 3.68i)16-s − 6.45·17-s + 5.84i·19-s + (−0.562 − 4.43i)20-s + (−0.194 + 6.18i)22-s + (−0.0875 + 0.0505i)23-s + ⋯ |
L(s) = 1 | + (0.881 − 0.472i)2-s + (0.553 − 0.832i)4-s + (0.756 − 0.653i)5-s + (0.252 − 0.436i)7-s + (0.0939 − 0.995i)8-s + (0.358 − 0.933i)10-s + (−0.659 + 1.14i)11-s + (0.987 − 0.570i)13-s + (0.0158 − 0.504i)14-s + (−0.387 − 0.921i)16-s − 1.56·17-s + 1.34i·19-s + (−0.125 − 0.992i)20-s + (−0.0413 + 1.31i)22-s + (−0.0182 + 0.0105i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.203 + 0.978i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.203 + 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.07495 - 1.68716i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.07495 - 1.68716i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.24 + 0.668i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.69 + 1.46i)T \) |
good | 7 | \( 1 + (-0.667 + 1.15i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.18 - 3.78i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-3.56 + 2.05i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 6.45T + 17T^{2} \) |
| 19 | \( 1 - 5.84iT - 19T^{2} \) |
| 23 | \( 1 + (0.0875 - 0.0505i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.53 - 2.61i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.18 + 2.41i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 3.24iT - 37T^{2} \) |
| 41 | \( 1 + (3.50 - 2.02i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.92 - 3.33i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.00 - 1.73i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 2.77T + 53T^{2} \) |
| 59 | \( 1 + (-1.37 - 2.37i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.04 + 1.80i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.216 + 0.374i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 8.41T + 71T^{2} \) |
| 73 | \( 1 - 7.28iT - 73T^{2} \) |
| 79 | \( 1 + (-2.58 - 1.49i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (11.6 + 6.70i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 6.97iT - 89T^{2} \) |
| 97 | \( 1 + (-2.08 - 1.20i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.48212157818389229186008744899, −10.16870355868000546703854487203, −9.016236978740566224379942413839, −7.919043562881284969390632160786, −6.67799010530715631335252836884, −5.82043221402303128747759235955, −4.83322939307464485429538181164, −4.08304405639379613501784220473, −2.51015314560668930002668367875, −1.38562159009247686764800855876,
2.24223225908006317692316702634, 3.13884807019227767040249777466, 4.52069912112870285121779007395, 5.55147744775417226742714306224, 6.39219026503918916620564433804, 6.98011488475634568290893293787, 8.462714566987672288838154327715, 8.861647431914519252294674672739, 10.43831849874904778822154317824, 11.18566505865553975630404453988