Properties

Label 2-540-180.119-c1-0-23
Degree $2$
Conductor $540$
Sign $-0.656 + 0.754i$
Analytic cond. $4.31192$
Root an. cond. $2.07651$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.0443 − 1.41i)2-s + (−1.99 + 0.125i)4-s + (1.69 − 1.46i)5-s + (−0.667 + 1.15i)7-s + (0.265 + 2.81i)8-s + (−2.14 − 2.32i)10-s + (2.18 − 3.78i)11-s + (3.56 − 2.05i)13-s + (1.66 + 0.892i)14-s + (3.96 − 0.500i)16-s − 6.45·17-s − 5.84i·19-s + (−3.19 + 3.12i)20-s + (−5.45 − 2.92i)22-s + (0.0875 − 0.0505i)23-s + ⋯
L(s)  = 1  + (−0.0313 − 0.999i)2-s + (−0.998 + 0.0626i)4-s + (0.756 − 0.653i)5-s + (−0.252 + 0.436i)7-s + (0.0939 + 0.995i)8-s + (−0.677 − 0.735i)10-s + (0.659 − 1.14i)11-s + (0.987 − 0.570i)13-s + (0.444 + 0.238i)14-s + (0.992 − 0.125i)16-s − 1.56·17-s − 1.34i·19-s + (−0.714 + 0.699i)20-s + (−1.16 − 0.623i)22-s + (0.0182 − 0.0105i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.656 + 0.754i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.656 + 0.754i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(540\)    =    \(2^{2} \cdot 3^{3} \cdot 5\)
Sign: $-0.656 + 0.754i$
Analytic conductor: \(4.31192\)
Root analytic conductor: \(2.07651\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{540} (359, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 540,\ (\ :1/2),\ -0.656 + 0.754i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.566885 - 1.24515i\)
\(L(\frac12)\) \(\approx\) \(0.566885 - 1.24515i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.0443 + 1.41i)T \)
3 \( 1 \)
5 \( 1 + (-1.69 + 1.46i)T \)
good7 \( 1 + (0.667 - 1.15i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (-2.18 + 3.78i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (-3.56 + 2.05i)T + (6.5 - 11.2i)T^{2} \)
17 \( 1 + 6.45T + 17T^{2} \)
19 \( 1 + 5.84iT - 19T^{2} \)
23 \( 1 + (-0.0875 + 0.0505i)T + (11.5 - 19.9i)T^{2} \)
29 \( 1 + (-4.53 - 2.61i)T + (14.5 + 25.1i)T^{2} \)
31 \( 1 + (4.18 - 2.41i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 + 3.24iT - 37T^{2} \)
41 \( 1 + (3.50 - 2.02i)T + (20.5 - 35.5i)T^{2} \)
43 \( 1 + (-1.92 + 3.33i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (3.00 + 1.73i)T + (23.5 + 40.7i)T^{2} \)
53 \( 1 - 2.77T + 53T^{2} \)
59 \( 1 + (1.37 + 2.37i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-1.04 + 1.80i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-0.216 - 0.374i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 - 8.41T + 71T^{2} \)
73 \( 1 - 7.28iT - 73T^{2} \)
79 \( 1 + (2.58 + 1.49i)T + (39.5 + 68.4i)T^{2} \)
83 \( 1 + (-11.6 - 6.70i)T + (41.5 + 71.8i)T^{2} \)
89 \( 1 - 6.97iT - 89T^{2} \)
97 \( 1 + (-2.08 - 1.20i)T + (48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.75949445005767985215335283132, −9.505850955335764417077607038822, −8.785352211036262275619991049542, −8.528761173920638528718376085674, −6.61063831932635353434483063049, −5.68867745991594014307398779397, −4.72206355477619598795532627459, −3.48808398696369667250852754908, −2.31576622001543966053186398706, −0.869017520698175881412438735180, 1.79167470606825312992990758054, 3.70433678608919670901793470287, 4.57695943933502260868688601112, 5.98764779370373418828283291415, 6.58872756848053724421815353721, 7.24347260577555964440601744890, 8.463350300406283711521922672133, 9.365505061131789224167458852845, 10.01453571051488200268446541894, 10.88892719580250261166721681311

Graph of the $Z$-function along the critical line