Properties

Label 2-540-108.11-c1-0-60
Degree $2$
Conductor $540$
Sign $0.979 + 0.200i$
Analytic cond. $4.31192$
Root an. cond. $2.07651$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.36 + 0.365i)2-s + (1.31 − 1.12i)3-s + (1.73 + 0.999i)4-s + (0.342 − 0.939i)5-s + (2.20 − 1.05i)6-s + (1.60 + 0.283i)7-s + (2.00 + 1.99i)8-s + (0.460 − 2.96i)9-s + (0.811 − 1.15i)10-s + (−2.42 + 0.881i)11-s + (3.40 − 0.637i)12-s + (−2.45 + 2.06i)13-s + (2.09 + 0.976i)14-s + (−0.609 − 1.62i)15-s + (2.00 + 3.46i)16-s + (−2.30 + 1.33i)17-s + ⋯
L(s)  = 1  + (0.965 + 0.258i)2-s + (0.759 − 0.650i)3-s + (0.866 + 0.499i)4-s + (0.152 − 0.420i)5-s + (0.901 − 0.432i)6-s + (0.608 + 0.107i)7-s + (0.707 + 0.706i)8-s + (0.153 − 0.988i)9-s + (0.256 − 0.366i)10-s + (−0.730 + 0.265i)11-s + (0.982 − 0.184i)12-s + (−0.681 + 0.572i)13-s + (0.559 + 0.261i)14-s + (−0.157 − 0.418i)15-s + (0.500 + 0.865i)16-s + (−0.559 + 0.323i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.979 + 0.200i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.979 + 0.200i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(540\)    =    \(2^{2} \cdot 3^{3} \cdot 5\)
Sign: $0.979 + 0.200i$
Analytic conductor: \(4.31192\)
Root analytic conductor: \(2.07651\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{540} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 540,\ (\ :1/2),\ 0.979 + 0.200i)\)

Particular Values

\(L(1)\) \(\approx\) \(3.30529 - 0.334276i\)
\(L(\frac12)\) \(\approx\) \(3.30529 - 0.334276i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.36 - 0.365i)T \)
3 \( 1 + (-1.31 + 1.12i)T \)
5 \( 1 + (-0.342 + 0.939i)T \)
good7 \( 1 + (-1.60 - 0.283i)T + (6.57 + 2.39i)T^{2} \)
11 \( 1 + (2.42 - 0.881i)T + (8.42 - 7.07i)T^{2} \)
13 \( 1 + (2.45 - 2.06i)T + (2.25 - 12.8i)T^{2} \)
17 \( 1 + (2.30 - 1.33i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (0.766 + 0.442i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (1.27 + 7.21i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (4.19 - 5.00i)T + (-5.03 - 28.5i)T^{2} \)
31 \( 1 + (-3.65 + 0.644i)T + (29.1 - 10.6i)T^{2} \)
37 \( 1 + (-4.01 - 6.95i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-3.67 - 4.38i)T + (-7.11 + 40.3i)T^{2} \)
43 \( 1 + (1.35 + 3.71i)T + (-32.9 + 27.6i)T^{2} \)
47 \( 1 + (-0.825 + 4.67i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 - 0.903iT - 53T^{2} \)
59 \( 1 + (4.65 + 1.69i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (-0.652 + 3.70i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (-10.1 - 12.1i)T + (-11.6 + 65.9i)T^{2} \)
71 \( 1 + (7.02 + 12.1i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (2.01 - 3.48i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (2.44 - 2.91i)T + (-13.7 - 77.7i)T^{2} \)
83 \( 1 + (-6.67 - 5.60i)T + (14.4 + 81.7i)T^{2} \)
89 \( 1 + (2.17 + 1.25i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + (14.0 - 5.10i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.04677484236045025989847768581, −9.889544161003965168100020284676, −8.632066914404732321673961117907, −8.056727076590691734185466544398, −7.09593436373972017137328771240, −6.28912618001469624945546774144, −5.00924458308309352936337658940, −4.23510266505959651201034211232, −2.73727124507423310367014921232, −1.86445130357342578738941569566, 2.10290526276239037937263754041, 2.99400328626472922789643418128, 4.10499361470663945725388654187, 5.05167390819944141791506139904, 5.90133651818987892925152616454, 7.43764730083631325230407977457, 7.88366886023382801871295758573, 9.358976501491549140312367914667, 10.11350495827368203917805361129, 10.93477476236416601976008470525

Graph of the $Z$-function along the critical line