| L(s) = 1 | + (1 − i)2-s + (1.87 − 1.87i)3-s − 2i·4-s − 6.42·5-s − 3.74i·6-s + (−4.44 − 4.44i)7-s + (−2 − 2i)8-s + 1.97i·9-s + (−6.42 + 6.42i)10-s + 21.9i·11-s + (−3.74 − 3.74i)12-s − 3.05i·13-s − 8.89·14-s + (−12.0 + 12.0i)15-s − 4·16-s + (−3.40 + 3.40i)17-s + ⋯ |
| L(s) = 1 | + (0.5 − 0.5i)2-s + (0.624 − 0.624i)3-s − 0.5i·4-s − 1.28·5-s − 0.624i·6-s + (−0.635 − 0.635i)7-s + (−0.250 − 0.250i)8-s + 0.219i·9-s + (−0.642 + 0.642i)10-s + 1.99i·11-s + (−0.312 − 0.312i)12-s − 0.235i·13-s − 0.635·14-s + (−0.803 + 0.803i)15-s − 0.250·16-s + (−0.200 + 0.200i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.217 - 0.976i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.217 - 0.976i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(0.1543805941\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.1543805941\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-1 + i)T \) |
| 269 | \( 1 + (261. + 63.4i)T \) |
| good | 3 | \( 1 + (-1.87 + 1.87i)T - 9iT^{2} \) |
| 5 | \( 1 + 6.42T + 25T^{2} \) |
| 7 | \( 1 + (4.44 + 4.44i)T + 49iT^{2} \) |
| 11 | \( 1 - 21.9iT - 121T^{2} \) |
| 13 | \( 1 + 3.05iT - 169T^{2} \) |
| 17 | \( 1 + (3.40 - 3.40i)T - 289iT^{2} \) |
| 19 | \( 1 + (22.3 + 22.3i)T + 361iT^{2} \) |
| 23 | \( 1 + 20.1T + 529T^{2} \) |
| 29 | \( 1 + (-25.9 - 25.9i)T + 841iT^{2} \) |
| 31 | \( 1 + (1.70 + 1.70i)T + 961iT^{2} \) |
| 37 | \( 1 + 33.6T + 1.36e3T^{2} \) |
| 41 | \( 1 - 24.0T + 1.68e3T^{2} \) |
| 43 | \( 1 + 2.62iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 4.22T + 2.20e3T^{2} \) |
| 53 | \( 1 + 92.1T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-51.3 - 51.3i)T + 3.48e3iT^{2} \) |
| 61 | \( 1 + 102.T + 3.72e3T^{2} \) |
| 67 | \( 1 - 36.5T + 4.48e3T^{2} \) |
| 71 | \( 1 + (94.9 + 94.9i)T + 5.04e3iT^{2} \) |
| 73 | \( 1 + 62.4iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 115. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (84.2 + 84.2i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 - 31.9iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 69.3iT - 9.40e3T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.83653162399113079521804805612, −10.23187400766146484470288375366, −9.079084037707861480076070323942, −8.022168742853519273495883664255, −7.23036228298313399429984962936, −6.65810101739392506576743906170, −4.75675173730598663799358561256, −4.17252826262813073411252892004, −2.97169200848113165887976951293, −1.82532539071853417960791865450,
0.04459266331234178024833839031, 2.90056229511609153226074635451, 3.65290003959896647709799737360, 4.31396593215711606512940761750, 5.88734015211020937010598642600, 6.46783528428244837622263536517, 8.005828323930719953313496568362, 8.404646497203722967018320315681, 9.171787947057881556331720958437, 10.36459412046771680847879104772