| L(s) = 1 | + (1 + i)2-s + (−3.11 − 3.11i)3-s + 2i·4-s − 4.51·5-s − 6.23i·6-s + (6.48 − 6.48i)7-s + (−2 + 2i)8-s + 10.4i·9-s + (−4.51 − 4.51i)10-s − 14.0i·11-s + (6.23 − 6.23i)12-s + 8.00i·13-s + 12.9·14-s + (14.0 + 14.0i)15-s − 4·16-s + (−7.95 − 7.95i)17-s + ⋯ |
| L(s) = 1 | + (0.5 + 0.5i)2-s + (−1.03 − 1.03i)3-s + 0.5i·4-s − 0.902·5-s − 1.03i·6-s + (0.926 − 0.926i)7-s + (−0.250 + 0.250i)8-s + 1.16i·9-s + (−0.451 − 0.451i)10-s − 1.27i·11-s + (0.519 − 0.519i)12-s + 0.615i·13-s + 0.926·14-s + (0.937 + 0.937i)15-s − 0.250·16-s + (−0.467 − 0.467i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.949 - 0.313i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 538 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.949 - 0.313i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(0.1643482654\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.1643482654\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-1 - i)T \) |
| 269 | \( 1 + (37.0 + 266. i)T \) |
| good | 3 | \( 1 + (3.11 + 3.11i)T + 9iT^{2} \) |
| 5 | \( 1 + 4.51T + 25T^{2} \) |
| 7 | \( 1 + (-6.48 + 6.48i)T - 49iT^{2} \) |
| 11 | \( 1 + 14.0iT - 121T^{2} \) |
| 13 | \( 1 - 8.00iT - 169T^{2} \) |
| 17 | \( 1 + (7.95 + 7.95i)T + 289iT^{2} \) |
| 19 | \( 1 + (10.9 - 10.9i)T - 361iT^{2} \) |
| 23 | \( 1 - 26.8T + 529T^{2} \) |
| 29 | \( 1 + (25.8 - 25.8i)T - 841iT^{2} \) |
| 31 | \( 1 + (2.26 - 2.26i)T - 961iT^{2} \) |
| 37 | \( 1 + 35.4T + 1.36e3T^{2} \) |
| 41 | \( 1 + 15.7T + 1.68e3T^{2} \) |
| 43 | \( 1 - 22.2iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 69.1T + 2.20e3T^{2} \) |
| 53 | \( 1 - 11.9T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-0.476 + 0.476i)T - 3.48e3iT^{2} \) |
| 61 | \( 1 + 34.6T + 3.72e3T^{2} \) |
| 67 | \( 1 + 24.6T + 4.48e3T^{2} \) |
| 71 | \( 1 + (49.0 - 49.0i)T - 5.04e3iT^{2} \) |
| 73 | \( 1 - 124. iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 2.34iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-97.2 + 97.2i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + 32.5iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 10.7iT - 9.40e3T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.70203804341079376949843174478, −8.827156428724731481267293564467, −7.960998168777010272428316997148, −7.22439551082361386296401214543, −6.60399925027292575001231671638, −5.52111448251616043816667227786, −4.59121365131176680681313111197, −3.50677633026203062444842724018, −1.43774758160925064884810778783, −0.06375603070757601796242963025,
2.06426906840465867907230511490, 3.68086584643481493446465435513, 4.71897188019433589999820249760, 5.04146472364835833360756364850, 6.16647001508779266057985492429, 7.46849127638012641325426954181, 8.626158689608886783928448651908, 9.604074704018057003282473289814, 10.57612737467909058197071469720, 11.16013913150841380036814376335