L(s) = 1 | − 3.19i·5-s + 3.28·7-s + 1.70·11-s + 1.45i·13-s + 4.77i·17-s + 0.209i·19-s − 8.73i·23-s − 5.23·25-s − 2.65i·29-s + 9.47i·31-s − 10.5i·35-s + (3.65 + 4.86i)37-s + 11.3·41-s − 8.67i·43-s + 12.6·47-s + ⋯ |
L(s) = 1 | − 1.43i·5-s + 1.24·7-s + 0.514·11-s + 0.403i·13-s + 1.15i·17-s + 0.0481i·19-s − 1.82i·23-s − 1.04·25-s − 0.492i·29-s + 1.70i·31-s − 1.77i·35-s + (0.600 + 0.799i)37-s + 1.77·41-s − 1.32i·43-s + 1.84·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.600 + 0.799i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.600 + 0.799i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.526893502\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.526893502\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 37 | \( 1 + (-3.65 - 4.86i)T \) |
good | 5 | \( 1 + 3.19iT - 5T^{2} \) |
| 7 | \( 1 - 3.28T + 7T^{2} \) |
| 11 | \( 1 - 1.70T + 11T^{2} \) |
| 13 | \( 1 - 1.45iT - 13T^{2} \) |
| 17 | \( 1 - 4.77iT - 17T^{2} \) |
| 19 | \( 1 - 0.209iT - 19T^{2} \) |
| 23 | \( 1 + 8.73iT - 23T^{2} \) |
| 29 | \( 1 + 2.65iT - 29T^{2} \) |
| 31 | \( 1 - 9.47iT - 31T^{2} \) |
| 41 | \( 1 - 11.3T + 41T^{2} \) |
| 43 | \( 1 + 8.67iT - 43T^{2} \) |
| 47 | \( 1 - 12.6T + 47T^{2} \) |
| 53 | \( 1 - 5.11T + 53T^{2} \) |
| 59 | \( 1 - 1.65iT - 59T^{2} \) |
| 61 | \( 1 + 1.90iT - 61T^{2} \) |
| 67 | \( 1 + 1.90T + 67T^{2} \) |
| 71 | \( 1 + 9.51T + 71T^{2} \) |
| 73 | \( 1 - 6.10T + 73T^{2} \) |
| 79 | \( 1 - 3.62iT - 79T^{2} \) |
| 83 | \( 1 + 3.20T + 83T^{2} \) |
| 89 | \( 1 + 10.1iT - 89T^{2} \) |
| 97 | \( 1 - 10.1iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.261882520405593512594963166865, −7.56298330961821458716819984566, −6.58740877315757498448108300054, −5.81204324683639921215910276634, −5.03998845750446748065329715046, −4.39158127214436000043256202213, −3.99928132557047307245309174328, −2.45829908922555648247699685248, −1.55197937892092414911542090374, −0.844263133238740799217383712472,
1.00956813569491063182601979288, 2.19404668791642410744259611436, 2.86199147559539084609100440836, 3.80740338951365422227992947655, 4.54228087169228508032858503663, 5.58221799823408339709139802024, 6.02321432613556553608254965060, 7.15112490431695629375641797070, 7.47639219959486929137164464085, 7.989401753161252086479405964202