Properties

Label 2-5328-12.11-c1-0-12
Degree $2$
Conductor $5328$
Sign $-0.418 - 0.908i$
Analytic cond. $42.5442$
Root an. cond. $6.52259$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.16i·5-s + 4.00i·7-s − 1.34·11-s + 2.84·13-s + 4.41i·17-s − 7.02i·19-s − 4.58·23-s + 3.64·25-s + 2.59i·29-s + 5.66i·31-s + 4.67·35-s + 37-s + 9.38i·41-s − 9.95i·43-s − 12.2·47-s + ⋯
L(s)  = 1  − 0.521i·5-s + 1.51i·7-s − 0.404·11-s + 0.789·13-s + 1.07i·17-s − 1.61i·19-s − 0.955·23-s + 0.728·25-s + 0.482i·29-s + 1.01i·31-s + 0.790·35-s + 0.164·37-s + 1.46i·41-s − 1.51i·43-s − 1.78·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.418 - 0.908i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.418 - 0.908i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5328\)    =    \(2^{4} \cdot 3^{2} \cdot 37\)
Sign: $-0.418 - 0.908i$
Analytic conductor: \(42.5442\)
Root analytic conductor: \(6.52259\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5328} (2591, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5328,\ (\ :1/2),\ -0.418 - 0.908i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.298208354\)
\(L(\frac12)\) \(\approx\) \(1.298208354\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
37 \( 1 - T \)
good5 \( 1 + 1.16iT - 5T^{2} \)
7 \( 1 - 4.00iT - 7T^{2} \)
11 \( 1 + 1.34T + 11T^{2} \)
13 \( 1 - 2.84T + 13T^{2} \)
17 \( 1 - 4.41iT - 17T^{2} \)
19 \( 1 + 7.02iT - 19T^{2} \)
23 \( 1 + 4.58T + 23T^{2} \)
29 \( 1 - 2.59iT - 29T^{2} \)
31 \( 1 - 5.66iT - 31T^{2} \)
41 \( 1 - 9.38iT - 41T^{2} \)
43 \( 1 + 9.95iT - 43T^{2} \)
47 \( 1 + 12.2T + 47T^{2} \)
53 \( 1 - 9.53iT - 53T^{2} \)
59 \( 1 - 12.3T + 59T^{2} \)
61 \( 1 - 10.1T + 61T^{2} \)
67 \( 1 - 1.48iT - 67T^{2} \)
71 \( 1 - 0.505T + 71T^{2} \)
73 \( 1 - 1.93T + 73T^{2} \)
79 \( 1 + 4.99iT - 79T^{2} \)
83 \( 1 + 2.33T + 83T^{2} \)
89 \( 1 - 3.64iT - 89T^{2} \)
97 \( 1 + 2.74T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.593487052249372099946260291632, −7.970439840636787159246362505120, −6.78790001501962753171442128437, −6.27705323395552047815147452364, −5.37131028477400361959288699659, −5.01878735568290274875641652188, −3.97814971158777719590495671735, −2.99493457718256668502743646528, −2.24147228407536452897347687891, −1.21968176915030013835214878791, 0.35733278311690605274179552173, 1.46646738369845126808632857959, 2.59645687294321342918443049353, 3.67135075483132316075752918103, 3.98380391834725752948238768346, 5.01945956428139976937173999471, 5.89026548756992125140863184567, 6.65043001385664629267245426258, 7.20781575897972690684521225143, 7.999770925684282026590832918594

Graph of the $Z$-function along the critical line