L(s) = 1 | − 2.30i·5-s − 4.07i·7-s + 2.75·11-s − 4.51·13-s − 3.51i·17-s − 5.45i·19-s − 0.877·23-s − 0.293·25-s + 0.290i·29-s + 1.57i·31-s − 9.38·35-s − 37-s − 3.40i·41-s − 2.37i·43-s − 0.815·47-s + ⋯ |
L(s) = 1 | − 1.02i·5-s − 1.54i·7-s + 0.831·11-s − 1.25·13-s − 0.852i·17-s − 1.25i·19-s − 0.183·23-s − 0.0586·25-s + 0.0539i·29-s + 0.283i·31-s − 1.58·35-s − 0.164·37-s − 0.532i·41-s − 0.362i·43-s − 0.118·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.995 - 0.0917i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.995 - 0.0917i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.365883313\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.365883313\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 37 | \( 1 + T \) |
good | 5 | \( 1 + 2.30iT - 5T^{2} \) |
| 7 | \( 1 + 4.07iT - 7T^{2} \) |
| 11 | \( 1 - 2.75T + 11T^{2} \) |
| 13 | \( 1 + 4.51T + 13T^{2} \) |
| 17 | \( 1 + 3.51iT - 17T^{2} \) |
| 19 | \( 1 + 5.45iT - 19T^{2} \) |
| 23 | \( 1 + 0.877T + 23T^{2} \) |
| 29 | \( 1 - 0.290iT - 29T^{2} \) |
| 31 | \( 1 - 1.57iT - 31T^{2} \) |
| 41 | \( 1 + 3.40iT - 41T^{2} \) |
| 43 | \( 1 + 2.37iT - 43T^{2} \) |
| 47 | \( 1 + 0.815T + 47T^{2} \) |
| 53 | \( 1 + 11.8iT - 53T^{2} \) |
| 59 | \( 1 - 6.27T + 59T^{2} \) |
| 61 | \( 1 - 3.66T + 61T^{2} \) |
| 67 | \( 1 - 4.98iT - 67T^{2} \) |
| 71 | \( 1 + 10.7T + 71T^{2} \) |
| 73 | \( 1 - 11.0T + 73T^{2} \) |
| 79 | \( 1 - 10.8iT - 79T^{2} \) |
| 83 | \( 1 + 14.3T + 83T^{2} \) |
| 89 | \( 1 + 7.85iT - 89T^{2} \) |
| 97 | \( 1 - 14.8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.69832601400426514911667433109, −7.03183792944039690842488882627, −6.73775104216211676540560038428, −5.38088733181242050084109041953, −4.79904546592224611864917753029, −4.27266937114857716777694350138, −3.42001361201647731320118151255, −2.27138138347538367601067115901, −1.07032923967732251268312535344, −0.39120667320500375506535517938,
1.65024764572429843395765772987, 2.43562838440389138419345760143, 3.13654092580088441943933884940, 4.03446285750194150146978229394, 4.99710638234541755061813490374, 5.93131299336537299790919971800, 6.22256652468772534956727288574, 7.10257191313629758742940997173, 7.82741567773260674748297799793, 8.556288603156579700510599675162