Properties

Label 2-5328-12.11-c1-0-69
Degree $2$
Conductor $5328$
Sign $-0.995 - 0.0917i$
Analytic cond. $42.5442$
Root an. cond. $6.52259$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.30i·5-s − 4.07i·7-s + 2.75·11-s − 4.51·13-s − 3.51i·17-s − 5.45i·19-s − 0.877·23-s − 0.293·25-s + 0.290i·29-s + 1.57i·31-s − 9.38·35-s − 37-s − 3.40i·41-s − 2.37i·43-s − 0.815·47-s + ⋯
L(s)  = 1  − 1.02i·5-s − 1.54i·7-s + 0.831·11-s − 1.25·13-s − 0.852i·17-s − 1.25i·19-s − 0.183·23-s − 0.0586·25-s + 0.0539i·29-s + 0.283i·31-s − 1.58·35-s − 0.164·37-s − 0.532i·41-s − 0.362i·43-s − 0.118·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.995 - 0.0917i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.995 - 0.0917i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5328\)    =    \(2^{4} \cdot 3^{2} \cdot 37\)
Sign: $-0.995 - 0.0917i$
Analytic conductor: \(42.5442\)
Root analytic conductor: \(6.52259\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5328} (2591, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5328,\ (\ :1/2),\ -0.995 - 0.0917i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.365883313\)
\(L(\frac12)\) \(\approx\) \(1.365883313\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
37 \( 1 + T \)
good5 \( 1 + 2.30iT - 5T^{2} \)
7 \( 1 + 4.07iT - 7T^{2} \)
11 \( 1 - 2.75T + 11T^{2} \)
13 \( 1 + 4.51T + 13T^{2} \)
17 \( 1 + 3.51iT - 17T^{2} \)
19 \( 1 + 5.45iT - 19T^{2} \)
23 \( 1 + 0.877T + 23T^{2} \)
29 \( 1 - 0.290iT - 29T^{2} \)
31 \( 1 - 1.57iT - 31T^{2} \)
41 \( 1 + 3.40iT - 41T^{2} \)
43 \( 1 + 2.37iT - 43T^{2} \)
47 \( 1 + 0.815T + 47T^{2} \)
53 \( 1 + 11.8iT - 53T^{2} \)
59 \( 1 - 6.27T + 59T^{2} \)
61 \( 1 - 3.66T + 61T^{2} \)
67 \( 1 - 4.98iT - 67T^{2} \)
71 \( 1 + 10.7T + 71T^{2} \)
73 \( 1 - 11.0T + 73T^{2} \)
79 \( 1 - 10.8iT - 79T^{2} \)
83 \( 1 + 14.3T + 83T^{2} \)
89 \( 1 + 7.85iT - 89T^{2} \)
97 \( 1 - 14.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.69832601400426514911667433109, −7.03183792944039690842488882627, −6.73775104216211676540560038428, −5.38088733181242050084109041953, −4.79904546592224611864917753029, −4.27266937114857716777694350138, −3.42001361201647731320118151255, −2.27138138347538367601067115901, −1.07032923967732251268312535344, −0.39120667320500375506535517938, 1.65024764572429843395765772987, 2.43562838440389138419345760143, 3.13654092580088441943933884940, 4.03446285750194150146978229394, 4.99710638234541755061813490374, 5.93131299336537299790919971800, 6.22256652468772534956727288574, 7.10257191313629758742940997173, 7.82741567773260674748297799793, 8.556288603156579700510599675162

Graph of the $Z$-function along the critical line