Properties

Label 2-5328-12.11-c1-0-51
Degree $2$
Conductor $5328$
Sign $0.418 + 0.908i$
Analytic cond. $42.5442$
Root an. cond. $6.52259$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.05i·5-s + 1.35i·7-s + 5.12·11-s + 5.32·13-s − 4.54i·17-s − 1.11i·19-s + 0.226·23-s − 4.34·25-s − 3.49i·29-s + 0.0119i·31-s + 4.14·35-s − 37-s − 5.56i·41-s + 6.47i·43-s + 6.43·47-s + ⋯
L(s)  = 1  − 1.36i·5-s + 0.512i·7-s + 1.54·11-s + 1.47·13-s − 1.10i·17-s − 0.254i·19-s + 0.0471·23-s − 0.869·25-s − 0.648i·29-s + 0.00213i·31-s + 0.700·35-s − 0.164·37-s − 0.869i·41-s + 0.987i·43-s + 0.938·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.418 + 0.908i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.418 + 0.908i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5328\)    =    \(2^{4} \cdot 3^{2} \cdot 37\)
Sign: $0.418 + 0.908i$
Analytic conductor: \(42.5442\)
Root analytic conductor: \(6.52259\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5328} (2591, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5328,\ (\ :1/2),\ 0.418 + 0.908i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.464903433\)
\(L(\frac12)\) \(\approx\) \(2.464903433\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
37 \( 1 + T \)
good5 \( 1 + 3.05iT - 5T^{2} \)
7 \( 1 - 1.35iT - 7T^{2} \)
11 \( 1 - 5.12T + 11T^{2} \)
13 \( 1 - 5.32T + 13T^{2} \)
17 \( 1 + 4.54iT - 17T^{2} \)
19 \( 1 + 1.11iT - 19T^{2} \)
23 \( 1 - 0.226T + 23T^{2} \)
29 \( 1 + 3.49iT - 29T^{2} \)
31 \( 1 - 0.0119iT - 31T^{2} \)
41 \( 1 + 5.56iT - 41T^{2} \)
43 \( 1 - 6.47iT - 43T^{2} \)
47 \( 1 - 6.43T + 47T^{2} \)
53 \( 1 - 4.20iT - 53T^{2} \)
59 \( 1 - 4.13T + 59T^{2} \)
61 \( 1 + 0.618T + 61T^{2} \)
67 \( 1 - 10.2iT - 67T^{2} \)
71 \( 1 - 4.84T + 71T^{2} \)
73 \( 1 - 1.62T + 73T^{2} \)
79 \( 1 - 3.25iT - 79T^{2} \)
83 \( 1 + 12.9T + 83T^{2} \)
89 \( 1 - 11.4iT - 89T^{2} \)
97 \( 1 + 10.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.370693760038716134216969496880, −7.34225845751754374106373805825, −6.53387017225026601338776938835, −5.82566916974757873671609848119, −5.20470317389339104868666445455, −4.26663906807021484594037824616, −3.82163933689348605288402651500, −2.61001193664111947964499647759, −1.41523110385281105020173933584, −0.810909816587391651101247901508, 1.11701440413121301667238861416, 1.97981485390650300804004622352, 3.31048241267796413506178877030, 3.67539190076274010169392109129, 4.35066210256652152558976798517, 5.75334761035536033950527441470, 6.28387541198898194094178032278, 6.82130738690033609553259346277, 7.39659139914997381530315361542, 8.416814289593978904754071824095

Graph of the $Z$-function along the critical line