Properties

Label 2-5328-12.11-c1-0-8
Degree $2$
Conductor $5328$
Sign $-0.995 - 0.0917i$
Analytic cond. $42.5442$
Root an. cond. $6.52259$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.774i·5-s + 1.59i·7-s − 2.37·11-s − 3.72·13-s + 7.33i·17-s + 3.66i·19-s + 7.80·23-s + 4.39·25-s − 1.33i·29-s + 6.39i·31-s − 1.23·35-s − 37-s − 7.60i·41-s − 3.09i·43-s − 5.12·47-s + ⋯
L(s)  = 1  + 0.346i·5-s + 0.604i·7-s − 0.716·11-s − 1.03·13-s + 1.77i·17-s + 0.839i·19-s + 1.62·23-s + 0.879·25-s − 0.248i·29-s + 1.14i·31-s − 0.209·35-s − 0.164·37-s − 1.18i·41-s − 0.471i·43-s − 0.746·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.995 - 0.0917i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.995 - 0.0917i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5328\)    =    \(2^{4} \cdot 3^{2} \cdot 37\)
Sign: $-0.995 - 0.0917i$
Analytic conductor: \(42.5442\)
Root analytic conductor: \(6.52259\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5328} (2591, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5328,\ (\ :1/2),\ -0.995 - 0.0917i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8017260398\)
\(L(\frac12)\) \(\approx\) \(0.8017260398\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
37 \( 1 + T \)
good5 \( 1 - 0.774iT - 5T^{2} \)
7 \( 1 - 1.59iT - 7T^{2} \)
11 \( 1 + 2.37T + 11T^{2} \)
13 \( 1 + 3.72T + 13T^{2} \)
17 \( 1 - 7.33iT - 17T^{2} \)
19 \( 1 - 3.66iT - 19T^{2} \)
23 \( 1 - 7.80T + 23T^{2} \)
29 \( 1 + 1.33iT - 29T^{2} \)
31 \( 1 - 6.39iT - 31T^{2} \)
41 \( 1 + 7.60iT - 41T^{2} \)
43 \( 1 + 3.09iT - 43T^{2} \)
47 \( 1 + 5.12T + 47T^{2} \)
53 \( 1 + 8.58iT - 53T^{2} \)
59 \( 1 + 4.57T + 59T^{2} \)
61 \( 1 + 2.98T + 61T^{2} \)
67 \( 1 + 2.99iT - 67T^{2} \)
71 \( 1 + 8.98T + 71T^{2} \)
73 \( 1 - 5.51T + 73T^{2} \)
79 \( 1 - 10.4iT - 79T^{2} \)
83 \( 1 + 8.36T + 83T^{2} \)
89 \( 1 - 7.82iT - 89T^{2} \)
97 \( 1 + 14.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.501154044216565048714095278648, −7.88297859227547117251707753911, −7.03135705889522907476312438891, −6.49574459134595827754347743302, −5.46065571793367112776267464097, −5.13851188525119806489807222512, −4.04746417326955267209888550515, −3.15325284312566825032671265469, −2.43290067389607021194046036626, −1.45855941101337150465197865445, 0.22125119298995941193129651980, 1.17026437073991616867311596017, 2.73821696513331252360306196738, 2.91647670710112174649572931835, 4.45069636418885142391625034892, 4.83106026630590193534091590456, 5.43367751902194287335375692813, 6.60175000249969075613108303438, 7.29853120661260732507228850032, 7.56922653520728073740751151708

Graph of the $Z$-function along the critical line