L(s) = 1 | + 0.617i·5-s + 2.19i·7-s + 0.928·11-s − 0.951·13-s + 0.493i·17-s − 2.39i·19-s + 5.17·23-s + 4.61·25-s + 4.22i·29-s − 2.47i·31-s − 1.35·35-s − 37-s − 7.06i·41-s + 9.01i·43-s − 0.0135·47-s + ⋯ |
L(s) = 1 | + 0.276i·5-s + 0.827i·7-s + 0.279·11-s − 0.263·13-s + 0.119i·17-s − 0.548i·19-s + 1.08·23-s + 0.923·25-s + 0.784i·29-s − 0.445i·31-s − 0.228·35-s − 0.164·37-s − 1.10i·41-s + 1.37i·43-s − 0.00197·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.418 - 0.908i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.418 - 0.908i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.904127102\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.904127102\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 37 | \( 1 + T \) |
good | 5 | \( 1 - 0.617iT - 5T^{2} \) |
| 7 | \( 1 - 2.19iT - 7T^{2} \) |
| 11 | \( 1 - 0.928T + 11T^{2} \) |
| 13 | \( 1 + 0.951T + 13T^{2} \) |
| 17 | \( 1 - 0.493iT - 17T^{2} \) |
| 19 | \( 1 + 2.39iT - 19T^{2} \) |
| 23 | \( 1 - 5.17T + 23T^{2} \) |
| 29 | \( 1 - 4.22iT - 29T^{2} \) |
| 31 | \( 1 + 2.47iT - 31T^{2} \) |
| 41 | \( 1 + 7.06iT - 41T^{2} \) |
| 43 | \( 1 - 9.01iT - 43T^{2} \) |
| 47 | \( 1 + 0.0135T + 47T^{2} \) |
| 53 | \( 1 + 7.85iT - 53T^{2} \) |
| 59 | \( 1 - 10.4T + 59T^{2} \) |
| 61 | \( 1 + 5.10T + 61T^{2} \) |
| 67 | \( 1 - 11.1iT - 67T^{2} \) |
| 71 | \( 1 + 0.138T + 71T^{2} \) |
| 73 | \( 1 + 6.72T + 73T^{2} \) |
| 79 | \( 1 + 10.7iT - 79T^{2} \) |
| 83 | \( 1 - 14.6T + 83T^{2} \) |
| 89 | \( 1 - 13.8iT - 89T^{2} \) |
| 97 | \( 1 - 9.48T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.467022312106352113332166461425, −7.50230755899095049985689601509, −6.87446562144977991466944471644, −6.24582569453001763219674879794, −5.31770498543729065773810455596, −4.84058652276645155374450433476, −3.75853141166722311842933848481, −2.90726385129144246863581170293, −2.21821161123568988748825246336, −0.982266395245561976841077783435,
0.61484713994287356309786258433, 1.54308411945616707600407639192, 2.74069967225383829719789495307, 3.59935820605903130795056303695, 4.40676917261732121045717697133, 5.03723347972209623630274512736, 5.90631486729036116163057988994, 6.77627103444117834285988940548, 7.27564045406986038296335057639, 8.022061928233082616390091476074