| L(s) = 1 | + (0.208 − 0.361i)2-s + (1.01 + 1.40i)3-s + (0.912 + 1.58i)4-s + (0.573 + 0.994i)5-s + (0.719 − 0.0735i)6-s + (−1.97 + 3.41i)7-s + 1.59·8-s + (−0.943 + 2.84i)9-s + 0.479·10-s + (2.89 − 5.01i)11-s + (−1.29 + 2.88i)12-s + (−1.98 − 3.43i)13-s + (0.823 + 1.42i)14-s + (−0.813 + 1.81i)15-s + (−1.49 + 2.58i)16-s − 1.31·17-s + ⋯ |
| L(s) = 1 | + (0.147 − 0.255i)2-s + (0.585 + 0.810i)3-s + (0.456 + 0.790i)4-s + (0.256 + 0.444i)5-s + (0.293 − 0.0300i)6-s + (−0.744 + 1.29i)7-s + 0.564·8-s + (−0.314 + 0.949i)9-s + 0.151·10-s + (0.873 − 1.51i)11-s + (−0.373 + 0.832i)12-s + (−0.550 − 0.953i)13-s + (0.220 + 0.381i)14-s + (−0.210 + 0.468i)15-s + (−0.372 + 0.645i)16-s − 0.318·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 531 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0292 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 531 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0292 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.41433 + 1.45628i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.41433 + 1.45628i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (-1.01 - 1.40i)T \) |
| 59 | \( 1 + (0.5 + 0.866i)T \) |
| good | 2 | \( 1 + (-0.208 + 0.361i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-0.573 - 0.994i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (1.97 - 3.41i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.89 + 5.01i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.98 + 3.43i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 1.31T + 17T^{2} \) |
| 19 | \( 1 - 0.413T + 19T^{2} \) |
| 23 | \( 1 + (-1.59 - 2.76i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.434 + 0.752i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (3.19 + 5.53i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 7.30T + 37T^{2} \) |
| 41 | \( 1 + (-1.69 - 2.93i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.47 + 2.55i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (4.44 - 7.70i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 13.3T + 53T^{2} \) |
| 61 | \( 1 + (1.62 - 2.80i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.16 - 10.6i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 2.48T + 71T^{2} \) |
| 73 | \( 1 + 6.01T + 73T^{2} \) |
| 79 | \( 1 + (1.50 - 2.60i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-6.49 + 11.2i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 2.89T + 89T^{2} \) |
| 97 | \( 1 + (-3.93 + 6.81i)T + (-48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.17626487778160169365390478244, −10.17547152163346386333520670446, −9.220438819348571606781560621832, −8.592827270961407938092627325073, −7.67582453984193262458355551106, −6.34038202533466660539174798057, −5.56162825861269535602514184189, −4.01050653275948319383437895302, −3.00108177732715866259247558626, −2.57025349697313839276401195922,
1.14530729932232757509248943257, 2.19799915708060566674237837823, 3.91781296061666673929730918817, 4.92753498367652824649729171348, 6.49846403283708296462030833216, 6.90775991496668155267002338634, 7.46892208643611663982727624096, 9.087005635760722511157794155511, 9.592785348734265511839510064762, 10.44287970540606345092460391119