Properties

Label 2-5292-21.20-c1-0-43
Degree $2$
Conductor $5292$
Sign $-0.654 + 0.755i$
Analytic cond. $42.2568$
Root an. cond. $6.50052$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6.92i·13-s + 8.66i·19-s − 5·25-s − 8.66i·31-s + 10·37-s − 5·43-s − 15.5i·61-s − 16·67-s − 1.73i·73-s − 4·79-s + 5.19i·97-s − 3.46i·103-s − 17·109-s + ⋯
L(s)  = 1  − 1.92i·13-s + 1.98i·19-s − 25-s − 1.55i·31-s + 1.64·37-s − 0.762·43-s − 1.99i·61-s − 1.95·67-s − 0.202i·73-s − 0.450·79-s + 0.527i·97-s − 0.341i·103-s − 1.62·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5292 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.654 + 0.755i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5292 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.654 + 0.755i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5292\)    =    \(2^{2} \cdot 3^{3} \cdot 7^{2}\)
Sign: $-0.654 + 0.755i$
Analytic conductor: \(42.2568\)
Root analytic conductor: \(6.50052\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5292} (2645, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5292,\ (\ :1/2),\ -0.654 + 0.755i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9414506098\)
\(L(\frac12)\) \(\approx\) \(0.9414506098\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 5T^{2} \)
11 \( 1 - 11T^{2} \)
13 \( 1 + 6.92iT - 13T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 - 8.66iT - 19T^{2} \)
23 \( 1 - 23T^{2} \)
29 \( 1 - 29T^{2} \)
31 \( 1 + 8.66iT - 31T^{2} \)
37 \( 1 - 10T + 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 + 5T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 - 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 15.5iT - 61T^{2} \)
67 \( 1 + 16T + 67T^{2} \)
71 \( 1 - 71T^{2} \)
73 \( 1 + 1.73iT - 73T^{2} \)
79 \( 1 + 4T + 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 - 5.19iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.86716035883073108524945535585, −7.56587382050314106801083658236, −6.17871049938100016114878630517, −5.91727239654665803305051176063, −5.13777949584166543639388292098, −4.09749465251724101347535635601, −3.44151618655348431324507341178, −2.55206135215718351009065219463, −1.48004016365673446985818356099, −0.25122987644971837920793507810, 1.26046443957483906387819585097, 2.25087958907840390099443457601, 3.07702993070738161479890364610, 4.25476196644222422064525801683, 4.58364579166157841634249884644, 5.56331882237667967507294895796, 6.49299936261362511691128521130, 6.93848677937984737948319290422, 7.61344306470927945823470032371, 8.653253596541474391080475803030

Graph of the $Z$-function along the critical line