L(s) = 1 | − 5.19i·13-s + 3.46i·19-s − 5·25-s + 8.66i·31-s − 11·37-s − 5·43-s − 8.66i·61-s + 5·67-s + 13.8i·73-s + 17·79-s + 19.0i·97-s + 15.5i·103-s − 17·109-s + ⋯ |
L(s) = 1 | − 1.44i·13-s + 0.794i·19-s − 25-s + 1.55i·31-s − 1.80·37-s − 0.762·43-s − 1.10i·61-s + 0.610·67-s + 1.62i·73-s + 1.91·79-s + 1.93i·97-s + 1.53i·103-s − 1.62·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5292 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.654 - 0.755i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5292 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.654 - 0.755i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5930767204\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5930767204\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 5T^{2} \) |
| 11 | \( 1 - 11T^{2} \) |
| 13 | \( 1 + 5.19iT - 13T^{2} \) |
| 17 | \( 1 + 17T^{2} \) |
| 19 | \( 1 - 3.46iT - 19T^{2} \) |
| 23 | \( 1 - 23T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 - 8.66iT - 31T^{2} \) |
| 37 | \( 1 + 11T + 37T^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 + 5T + 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 + 8.66iT - 61T^{2} \) |
| 67 | \( 1 - 5T + 67T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 - 13.8iT - 73T^{2} \) |
| 79 | \( 1 - 17T + 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 - 19.0iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.241001694185974995527812897365, −7.936869188063314151670597058975, −7.00310059293055954548824579682, −6.33140145751462801583483214359, −5.38983429827543614124661030438, −5.07339055811142754661614804588, −3.77312625595064295626551909776, −3.32246369656432089808295845327, −2.23290440433770820271489731249, −1.19358987372700511477429586062,
0.15649257901959477186067883919, 1.64643302784307547116721143810, 2.36342405152180623731886687414, 3.50427762351055442990088046558, 4.22353444123110275020389250435, 4.94404416408286246665793372854, 5.81822557783620274464483646378, 6.57858043849105130473817358519, 7.14996074477411638312342848278, 7.906443356470116545521637909581