Properties

Label 2-23e2-23.2-c1-0-17
Degree $2$
Conductor $529$
Sign $-0.603 - 0.797i$
Analytic cond. $4.22408$
Root an. cond. $2.05525$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.85 + 1.19i)2-s + (0.357 + 2.48i)3-s + (1.18 + 2.59i)4-s + (1.18 + 0.348i)5-s + (−2.30 + 5.03i)6-s + (1.55 − 1.79i)7-s + (−0.268 + 1.86i)8-s + (−3.18 + 0.934i)9-s + (1.78 + 2.05i)10-s + (−1.60 + 1.03i)11-s + (−6.03 + 3.88i)12-s + (−0.128 − 0.148i)13-s + (5.01 − 1.47i)14-s + (−0.442 + 3.07i)15-s + (1.01 − 1.17i)16-s + (−0.648 + 1.41i)17-s + ⋯
L(s)  = 1  + (1.31 + 0.842i)2-s + (0.206 + 1.43i)3-s + (0.593 + 1.29i)4-s + (0.530 + 0.155i)5-s + (−0.939 + 2.05i)6-s + (0.587 − 0.677i)7-s + (−0.0949 + 0.660i)8-s + (−1.06 + 0.311i)9-s + (0.564 + 0.651i)10-s + (−0.484 + 0.311i)11-s + (−1.74 + 1.12i)12-s + (−0.0356 − 0.0411i)13-s + (1.34 − 0.393i)14-s + (−0.114 + 0.794i)15-s + (0.254 − 0.293i)16-s + (−0.157 + 0.344i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.603 - 0.797i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 529 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.603 - 0.797i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(529\)    =    \(23^{2}\)
Sign: $-0.603 - 0.797i$
Analytic conductor: \(4.22408\)
Root analytic conductor: \(2.05525\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{529} (255, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 529,\ (\ :1/2),\ -0.603 - 0.797i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.46863 + 2.95554i\)
\(L(\frac12)\) \(\approx\) \(1.46863 + 2.95554i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 \)
good2 \( 1 + (-1.85 - 1.19i)T + (0.830 + 1.81i)T^{2} \)
3 \( 1 + (-0.357 - 2.48i)T + (-2.87 + 0.845i)T^{2} \)
5 \( 1 + (-1.18 - 0.348i)T + (4.20 + 2.70i)T^{2} \)
7 \( 1 + (-1.55 + 1.79i)T + (-0.996 - 6.92i)T^{2} \)
11 \( 1 + (1.60 - 1.03i)T + (4.56 - 10.0i)T^{2} \)
13 \( 1 + (0.128 + 0.148i)T + (-1.85 + 12.8i)T^{2} \)
17 \( 1 + (0.648 - 1.41i)T + (-11.1 - 12.8i)T^{2} \)
19 \( 1 + (3.31 + 7.26i)T + (-12.4 + 14.3i)T^{2} \)
29 \( 1 + (-2.06 + 4.52i)T + (-18.9 - 21.9i)T^{2} \)
31 \( 1 + (0.253 - 1.76i)T + (-29.7 - 8.73i)T^{2} \)
37 \( 1 + (3.72 - 1.09i)T + (31.1 - 20.0i)T^{2} \)
41 \( 1 + (0.409 + 0.120i)T + (34.4 + 22.1i)T^{2} \)
43 \( 1 + (0.633 + 4.40i)T + (-41.2 + 12.1i)T^{2} \)
47 \( 1 + 2.58T + 47T^{2} \)
53 \( 1 + (6.43 - 7.42i)T + (-7.54 - 52.4i)T^{2} \)
59 \( 1 + (-4.72 - 5.45i)T + (-8.39 + 58.3i)T^{2} \)
61 \( 1 + (1.05 - 7.35i)T + (-58.5 - 17.1i)T^{2} \)
67 \( 1 + (-6.11 - 3.92i)T + (27.8 + 60.9i)T^{2} \)
71 \( 1 + (0.614 + 0.394i)T + (29.4 + 64.5i)T^{2} \)
73 \( 1 + (2.67 + 5.86i)T + (-47.8 + 55.1i)T^{2} \)
79 \( 1 + (-3.71 - 4.29i)T + (-11.2 + 78.1i)T^{2} \)
83 \( 1 + (-12.3 + 3.63i)T + (69.8 - 44.8i)T^{2} \)
89 \( 1 + (-1.97 - 13.7i)T + (-85.3 + 25.0i)T^{2} \)
97 \( 1 + (4.14 + 1.21i)T + (81.6 + 52.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.96892252010160373779922963063, −10.37331494319230922876316632423, −9.505643403500595919296929098449, −8.400491948801939835303277137316, −7.30373453268220339645510287490, −6.34505148843628118860584695218, −5.24045606445993937720092862477, −4.58360232123839962576399684674, −3.94848944562163171910107085683, −2.65551387505525891919509504693, 1.66230650091446981943082345467, 2.20998025602574878140814643075, 3.45435362792228517202500603836, 4.95081685089000973885053852047, 5.75009159929404164949129671150, 6.52327914811979568477731846405, 7.894308809084934013622823197474, 8.498474028052429220995707110912, 9.913565043667627091071014716638, 10.98700103866989849797024359509

Graph of the $Z$-function along the critical line