L(s) = 1 | + (0.0573 + 0.176i)2-s + (−0.417 + 1.28i)3-s + (1.59 − 1.15i)4-s + 2.24·5-s − 0.250·6-s + (2.41 − 1.75i)7-s + (0.595 + 0.432i)8-s + (0.953 + 0.692i)9-s + (0.128 + 0.396i)10-s + (−4.52 + 3.28i)11-s + (0.819 + 2.52i)12-s + (1.77 − 5.45i)13-s + (0.449 + 0.326i)14-s + (−0.936 + 2.88i)15-s + (1.17 − 3.60i)16-s + (−0.809 − 0.587i)17-s + ⋯ |
L(s) = 1 | + (0.0405 + 0.124i)2-s + (−0.240 + 0.741i)3-s + (0.795 − 0.577i)4-s + 1.00·5-s − 0.102·6-s + (0.914 − 0.664i)7-s + (0.210 + 0.152i)8-s + (0.317 + 0.230i)9-s + (0.0407 + 0.125i)10-s + (−1.36 + 0.990i)11-s + (0.236 + 0.728i)12-s + (0.491 − 1.51i)13-s + (0.120 + 0.0872i)14-s + (−0.241 + 0.744i)15-s + (0.293 − 0.902i)16-s + (−0.196 − 0.142i)17-s + ⋯ |
Λ(s)=(=(527s/2ΓC(s)L(s)(0.971−0.238i)Λ(2−s)
Λ(s)=(=(527s/2ΓC(s+1/2)L(s)(0.971−0.238i)Λ(1−s)
Degree: |
2 |
Conductor: |
527
= 17⋅31
|
Sign: |
0.971−0.238i
|
Analytic conductor: |
4.20811 |
Root analytic conductor: |
2.05136 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ527(35,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 527, ( :1/2), 0.971−0.238i)
|
Particular Values
L(1) |
≈ |
2.02427+0.244587i |
L(21) |
≈ |
2.02427+0.244587i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 17 | 1+(0.809+0.587i)T |
| 31 | 1+(5.56+0.200i)T |
good | 2 | 1+(−0.0573−0.176i)T+(−1.61+1.17i)T2 |
| 3 | 1+(0.417−1.28i)T+(−2.42−1.76i)T2 |
| 5 | 1−2.24T+5T2 |
| 7 | 1+(−2.41+1.75i)T+(2.16−6.65i)T2 |
| 11 | 1+(4.52−3.28i)T+(3.39−10.4i)T2 |
| 13 | 1+(−1.77+5.45i)T+(−10.5−7.64i)T2 |
| 19 | 1+(0.737+2.27i)T+(−15.3+11.1i)T2 |
| 23 | 1+(1.65+1.20i)T+(7.10+21.8i)T2 |
| 29 | 1+(−1.74−5.35i)T+(−23.4+17.0i)T2 |
| 37 | 1−4.55T+37T2 |
| 41 | 1+(−1.55−4.79i)T+(−33.1+24.0i)T2 |
| 43 | 1+(−2.97−9.16i)T+(−34.7+25.2i)T2 |
| 47 | 1+(2.06−6.34i)T+(−38.0−27.6i)T2 |
| 53 | 1+(2.30+1.67i)T+(16.3+50.4i)T2 |
| 59 | 1+(−0.552+1.69i)T+(−47.7−34.6i)T2 |
| 61 | 1−3.77T+61T2 |
| 67 | 1−5.18T+67T2 |
| 71 | 1+(12.5+9.10i)T+(21.9+67.5i)T2 |
| 73 | 1+(10.5−7.63i)T+(22.5−69.4i)T2 |
| 79 | 1+(0.758+0.551i)T+(24.4+75.1i)T2 |
| 83 | 1+(1.29+3.97i)T+(−67.1+48.7i)T2 |
| 89 | 1+(−11.6+8.49i)T+(27.5−84.6i)T2 |
| 97 | 1+(0.642−0.466i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.66433293049378812228480250907, −10.26906427279673849500874999570, −9.546668299270770460370700444927, −7.929057160672936978820432484227, −7.37941728036486641987435688524, −6.05145968071330166627094466768, −5.20415307512504645897847233671, −4.62875298595070656663145961613, −2.72906754982018369325501236581, −1.54239977956998992754757292730,
1.75508451378149840373344474739, 2.32090016091787389824411956478, 3.97695940738487493900274656401, 5.60645751977636580138983623971, 6.14129762848257550075387373534, 7.17113763050249977280918737428, 8.068662689596221231073143683930, 8.864427958006547403103007767828, 10.09750036258226685552818443205, 11.07190489420973985892743584557