Properties

Label 2-5265-1.1-c1-0-91
Degree $2$
Conductor $5265$
Sign $-1$
Analytic cond. $42.0412$
Root an. cond. $6.48392$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.494·2-s − 1.75·4-s + 5-s − 4.28·7-s + 1.85·8-s − 0.494·10-s − 4.48·11-s − 13-s + 2.11·14-s + 2.59·16-s − 1.57·17-s + 1.86·19-s − 1.75·20-s + 2.21·22-s + 5.25·23-s + 25-s + 0.494·26-s + 7.52·28-s + 0.750·29-s + 10.2·31-s − 4.99·32-s + 0.776·34-s − 4.28·35-s + 2.78·37-s − 0.923·38-s + 1.85·40-s + 6.36·41-s + ⋯
L(s)  = 1  − 0.349·2-s − 0.877·4-s + 0.447·5-s − 1.61·7-s + 0.656·8-s − 0.156·10-s − 1.35·11-s − 0.277·13-s + 0.565·14-s + 0.648·16-s − 0.381·17-s + 0.428·19-s − 0.392·20-s + 0.472·22-s + 1.09·23-s + 0.200·25-s + 0.0969·26-s + 1.42·28-s + 0.139·29-s + 1.83·31-s − 0.882·32-s + 0.133·34-s − 0.724·35-s + 0.457·37-s − 0.149·38-s + 0.293·40-s + 0.993·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5265 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5265 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5265\)    =    \(3^{4} \cdot 5 \cdot 13\)
Sign: $-1$
Analytic conductor: \(42.0412\)
Root analytic conductor: \(6.48392\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5265,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - T \)
13 \( 1 + T \)
good2 \( 1 + 0.494T + 2T^{2} \)
7 \( 1 + 4.28T + 7T^{2} \)
11 \( 1 + 4.48T + 11T^{2} \)
17 \( 1 + 1.57T + 17T^{2} \)
19 \( 1 - 1.86T + 19T^{2} \)
23 \( 1 - 5.25T + 23T^{2} \)
29 \( 1 - 0.750T + 29T^{2} \)
31 \( 1 - 10.2T + 31T^{2} \)
37 \( 1 - 2.78T + 37T^{2} \)
41 \( 1 - 6.36T + 41T^{2} \)
43 \( 1 - 7.59T + 43T^{2} \)
47 \( 1 - 8.27T + 47T^{2} \)
53 \( 1 + 0.0752T + 53T^{2} \)
59 \( 1 + 11.4T + 59T^{2} \)
61 \( 1 + 11.9T + 61T^{2} \)
67 \( 1 + 12.8T + 67T^{2} \)
71 \( 1 + 14.4T + 71T^{2} \)
73 \( 1 - 9.37T + 73T^{2} \)
79 \( 1 + 6.09T + 79T^{2} \)
83 \( 1 + 0.612T + 83T^{2} \)
89 \( 1 - 16.2T + 89T^{2} \)
97 \( 1 + 14.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.77422851541333187883223475935, −7.31263265742717876279510911568, −6.29059148982833266916014371246, −5.76135485824667989525809939651, −4.87825901260352586735954631375, −4.23141216008912418457220035304, −2.99847867665541398806009586615, −2.68156309043291675796941682119, −1.01268224970995548806560796035, 0, 1.01268224970995548806560796035, 2.68156309043291675796941682119, 2.99847867665541398806009586615, 4.23141216008912418457220035304, 4.87825901260352586735954631375, 5.76135485824667989525809939651, 6.29059148982833266916014371246, 7.31263265742717876279510911568, 7.77422851541333187883223475935

Graph of the $Z$-function along the critical line