Properties

Label 2-525-1.1-c3-0-53
Degree $2$
Conductor $525$
Sign $-1$
Analytic cond. $30.9760$
Root an. cond. $5.56560$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·2-s + 3·3-s + 4-s + 9·6-s − 7·7-s − 21·8-s + 9·9-s − 6·11-s + 3·12-s − 41·13-s − 21·14-s − 71·16-s − 27·17-s + 27·18-s − 4·19-s − 21·21-s − 18·22-s − 75·23-s − 63·24-s − 123·26-s + 27·27-s − 7·28-s − 123·29-s − 205·31-s − 45·32-s − 18·33-s − 81·34-s + ⋯
L(s)  = 1  + 1.06·2-s + 0.577·3-s + 1/8·4-s + 0.612·6-s − 0.377·7-s − 0.928·8-s + 1/3·9-s − 0.164·11-s + 0.0721·12-s − 0.874·13-s − 0.400·14-s − 1.10·16-s − 0.385·17-s + 0.353·18-s − 0.0482·19-s − 0.218·21-s − 0.174·22-s − 0.679·23-s − 0.535·24-s − 0.927·26-s + 0.192·27-s − 0.0472·28-s − 0.787·29-s − 1.18·31-s − 0.248·32-s − 0.0949·33-s − 0.408·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(525\)    =    \(3 \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(30.9760\)
Root analytic conductor: \(5.56560\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 525,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - p T \)
5 \( 1 \)
7 \( 1 + p T \)
good2 \( 1 - 3 T + p^{3} T^{2} \)
11 \( 1 + 6 T + p^{3} T^{2} \)
13 \( 1 + 41 T + p^{3} T^{2} \)
17 \( 1 + 27 T + p^{3} T^{2} \)
19 \( 1 + 4 T + p^{3} T^{2} \)
23 \( 1 + 75 T + p^{3} T^{2} \)
29 \( 1 + 123 T + p^{3} T^{2} \)
31 \( 1 + 205 T + p^{3} T^{2} \)
37 \( 1 - 262 T + p^{3} T^{2} \)
41 \( 1 - 57 T + p^{3} T^{2} \)
43 \( 1 + 407 T + p^{3} T^{2} \)
47 \( 1 - 60 T + p^{3} T^{2} \)
53 \( 1 + 327 T + p^{3} T^{2} \)
59 \( 1 - 33 T + p^{3} T^{2} \)
61 \( 1 + 7 p T + p^{3} T^{2} \)
67 \( 1 - 628 T + p^{3} T^{2} \)
71 \( 1 - 300 T + p^{3} T^{2} \)
73 \( 1 + 98 T + p^{3} T^{2} \)
79 \( 1 - 686 T + p^{3} T^{2} \)
83 \( 1 + 1401 T + p^{3} T^{2} \)
89 \( 1 - 714 T + p^{3} T^{2} \)
97 \( 1 + 494 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.807302045796272295674898808054, −9.257496859134056000011165989452, −8.188394656051961823207356061331, −7.15749955504401947900929131498, −6.12558197363421899011780380839, −5.12353152151255960979168735074, −4.17161008577882404777006961996, −3.24748370261333307457715623213, −2.17896913760619259700923150123, 0, 2.17896913760619259700923150123, 3.24748370261333307457715623213, 4.17161008577882404777006961996, 5.12353152151255960979168735074, 6.12558197363421899011780380839, 7.15749955504401947900929131498, 8.188394656051961823207356061331, 9.257496859134056000011165989452, 9.807302045796272295674898808054

Graph of the $Z$-function along the critical line