Properties

Label 2-525-105.104-c1-0-12
Degree $2$
Conductor $525$
Sign $0.911 - 0.410i$
Analytic cond. $4.19214$
Root an. cond. $2.04747$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.792·2-s + (−1.26 − 1.18i)3-s − 1.37·4-s + (−1 − 0.939i)6-s + (1.73 + 2i)7-s − 2.67·8-s + (0.186 + 2.99i)9-s + 2.52i·11-s + (1.73 + 1.62i)12-s + 4.10·13-s + (1.37 + 1.58i)14-s + 0.627·16-s − 4.37i·17-s + (0.147 + 2.37i)18-s + 3.46i·19-s + ⋯
L(s)  = 1  + 0.560·2-s + (−0.728 − 0.684i)3-s − 0.686·4-s + (−0.408 − 0.383i)6-s + (0.654 + 0.755i)7-s − 0.944·8-s + (0.0620 + 0.998i)9-s + 0.761i·11-s + (0.499 + 0.469i)12-s + 1.13·13-s + (0.366 + 0.423i)14-s + 0.156·16-s − 1.06i·17-s + (0.0347 + 0.559i)18-s + 0.794i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.911 - 0.410i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.911 - 0.410i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(525\)    =    \(3 \cdot 5^{2} \cdot 7\)
Sign: $0.911 - 0.410i$
Analytic conductor: \(4.19214\)
Root analytic conductor: \(2.04747\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{525} (524, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 525,\ (\ :1/2),\ 0.911 - 0.410i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.24558 + 0.267451i\)
\(L(\frac12)\) \(\approx\) \(1.24558 + 0.267451i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.26 + 1.18i)T \)
5 \( 1 \)
7 \( 1 + (-1.73 - 2i)T \)
good2 \( 1 - 0.792T + 2T^{2} \)
11 \( 1 - 2.52iT - 11T^{2} \)
13 \( 1 - 4.10T + 13T^{2} \)
17 \( 1 + 4.37iT - 17T^{2} \)
19 \( 1 - 3.46iT - 19T^{2} \)
23 \( 1 - 8.51T + 23T^{2} \)
29 \( 1 - 0.939iT - 29T^{2} \)
31 \( 1 - 3.46iT - 31T^{2} \)
37 \( 1 - 6.74iT - 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 - 4.74iT - 43T^{2} \)
47 \( 1 - 1.62iT - 47T^{2} \)
53 \( 1 + 1.87T + 53T^{2} \)
59 \( 1 - 8.74T + 59T^{2} \)
61 \( 1 - 6.92iT - 61T^{2} \)
67 \( 1 + 4.74iT - 67T^{2} \)
71 \( 1 + 0.294iT - 71T^{2} \)
73 \( 1 + 6.92T + 73T^{2} \)
79 \( 1 - 2.37T + 79T^{2} \)
83 \( 1 + 17.4iT - 83T^{2} \)
89 \( 1 + 14.7T + 89T^{2} \)
97 \( 1 + 11.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.27893973386951434456351657696, −10.13215368918649517531731327317, −8.986080049623880865629247571898, −8.283444232890841702687134976349, −7.14168921351229082324364932095, −6.11162504961364887084990581502, −5.20542715906639265936282341519, −4.63080033300410024921108059716, −3.02407665648199169150376965414, −1.36742944608551150808558186017, 0.838721301636811534203425048740, 3.44505402013636177258084803891, 4.12031015900314002493891349209, 5.09096746642310717974550415489, 5.85855569060209032245785755024, 6.88619713892968861990071842212, 8.411150596072789314934466097985, 8.959197507933461851996908948836, 10.09674901734308681202563343948, 11.04878445724701657613037114015

Graph of the $Z$-function along the critical line