L(s) = 1 | − 1.09i·2-s + (1.70 + 0.323i)3-s + 0.791·4-s + (0.355 − 1.87i)6-s + (−1 − 2.44i)7-s − 3.06i·8-s + (2.79 + 1.09i)9-s − 3.06i·11-s + (1.34 + 0.255i)12-s + 2.44i·13-s + (−2.69 + 1.09i)14-s − 1.79·16-s − 2.69·17-s + (1.20 − 3.06i)18-s + 4.38i·19-s + ⋯ |
L(s) = 1 | − 0.777i·2-s + (0.982 + 0.186i)3-s + 0.395·4-s + (0.144 − 0.763i)6-s + (−0.377 − 0.925i)7-s − 1.08i·8-s + (0.930 + 0.366i)9-s − 0.925i·11-s + (0.388 + 0.0737i)12-s + 0.679i·13-s + (−0.719 + 0.293i)14-s − 0.447·16-s − 0.653·17-s + (0.284 − 0.723i)18-s + 1.00i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.198 + 0.980i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.198 + 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.71889 - 1.40543i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.71889 - 1.40543i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.70 - 0.323i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (1 + 2.44i)T \) |
good | 2 | \( 1 + 1.09iT - 2T^{2} \) |
| 11 | \( 1 + 3.06iT - 11T^{2} \) |
| 13 | \( 1 - 2.44iT - 13T^{2} \) |
| 17 | \( 1 + 2.69T + 17T^{2} \) |
| 19 | \( 1 - 4.38iT - 19T^{2} \) |
| 23 | \( 1 + 5.26iT - 23T^{2} \) |
| 29 | \( 1 - 5.26iT - 29T^{2} \) |
| 31 | \( 1 - 6.83iT - 31T^{2} \) |
| 37 | \( 1 - 8.58T + 37T^{2} \) |
| 41 | \( 1 - 10.2T + 41T^{2} \) |
| 43 | \( 1 + 6.58T + 43T^{2} \) |
| 47 | \( 1 + 2.69T + 47T^{2} \) |
| 53 | \( 1 - 3.93iT - 53T^{2} \) |
| 59 | \( 1 + 7.51T + 59T^{2} \) |
| 61 | \( 1 + 6.83iT - 61T^{2} \) |
| 67 | \( 1 - 4.16T + 67T^{2} \) |
| 71 | \( 1 + 3.06iT - 71T^{2} \) |
| 73 | \( 1 - 16.1iT - 73T^{2} \) |
| 79 | \( 1 - 0.582T + 79T^{2} \) |
| 83 | \( 1 + 15.5T + 83T^{2} \) |
| 89 | \( 1 - 7.51T + 89T^{2} \) |
| 97 | \( 1 + 11.7iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.66301043152650757542992734677, −9.938068612402823623396829819780, −9.063267957841084733808083192382, −8.093638043177411917726600995931, −7.06273485932057114445505261655, −6.32235190768800284100971946711, −4.43829051129235516338085071396, −3.60286749513328941185883069297, −2.70710607130775556586788946663, −1.34192785938245072143428077102,
2.11770585924029337569141189331, 2.88293043121573528269811973287, 4.47115881451899639836627766342, 5.72999566426945757149500549630, 6.62330686110557125292468298426, 7.53318446133461467571291601985, 8.139105203807625809435300692093, 9.211427605692900067295535871429, 9.764921638772443644393603630508, 11.12921407975172304860370337638