Properties

Label 2-5239-1.1-c1-0-306
Degree $2$
Conductor $5239$
Sign $-1$
Analytic cond. $41.8336$
Root an. cond. $6.46789$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.981·2-s + 1.43·3-s − 1.03·4-s − 0.0504·5-s + 1.41·6-s − 1.94·7-s − 2.98·8-s − 0.932·9-s − 0.0494·10-s + 0.678·11-s − 1.48·12-s − 1.90·14-s − 0.0724·15-s − 0.854·16-s + 5.99·17-s − 0.915·18-s + 6.66·19-s + 0.0522·20-s − 2.79·21-s + 0.665·22-s + 4.71·23-s − 4.28·24-s − 4.99·25-s − 5.65·27-s + 2.01·28-s − 6.85·29-s − 0.0711·30-s + ⋯
L(s)  = 1  + 0.694·2-s + 0.830·3-s − 0.518·4-s − 0.0225·5-s + 0.576·6-s − 0.735·7-s − 1.05·8-s − 0.310·9-s − 0.0156·10-s + 0.204·11-s − 0.430·12-s − 0.510·14-s − 0.0187·15-s − 0.213·16-s + 1.45·17-s − 0.215·18-s + 1.52·19-s + 0.0116·20-s − 0.610·21-s + 0.141·22-s + 0.983·23-s − 0.874·24-s − 0.999·25-s − 1.08·27-s + 0.380·28-s − 1.27·29-s − 0.0129·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5239 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5239 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5239\)    =    \(13^{2} \cdot 31\)
Sign: $-1$
Analytic conductor: \(41.8336\)
Root analytic conductor: \(6.46789\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5239,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
31 \( 1 + T \)
good2 \( 1 - 0.981T + 2T^{2} \)
3 \( 1 - 1.43T + 3T^{2} \)
5 \( 1 + 0.0504T + 5T^{2} \)
7 \( 1 + 1.94T + 7T^{2} \)
11 \( 1 - 0.678T + 11T^{2} \)
17 \( 1 - 5.99T + 17T^{2} \)
19 \( 1 - 6.66T + 19T^{2} \)
23 \( 1 - 4.71T + 23T^{2} \)
29 \( 1 + 6.85T + 29T^{2} \)
37 \( 1 + 6.27T + 37T^{2} \)
41 \( 1 + 2.38T + 41T^{2} \)
43 \( 1 + 8.25T + 43T^{2} \)
47 \( 1 - 10.6T + 47T^{2} \)
53 \( 1 + 0.411T + 53T^{2} \)
59 \( 1 - 0.0347T + 59T^{2} \)
61 \( 1 + 13.4T + 61T^{2} \)
67 \( 1 + 14.9T + 67T^{2} \)
71 \( 1 + 3.70T + 71T^{2} \)
73 \( 1 + 10.9T + 73T^{2} \)
79 \( 1 + 9.22T + 79T^{2} \)
83 \( 1 + 4.11T + 83T^{2} \)
89 \( 1 + 0.657T + 89T^{2} \)
97 \( 1 - 17.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.67009110114598691184179403948, −7.38398622742393685399300629558, −6.11175661693058789379616854836, −5.62041093306845636367605125438, −4.96506886622945086054265250990, −3.81642045566353553345740776606, −3.30828262025084071605975301486, −2.92351018885498768776639148528, −1.47715421971695612483914183472, 0, 1.47715421971695612483914183472, 2.92351018885498768776639148528, 3.30828262025084071605975301486, 3.81642045566353553345740776606, 4.96506886622945086054265250990, 5.62041093306845636367605125438, 6.11175661693058789379616854836, 7.38398622742393685399300629558, 7.67009110114598691184179403948

Graph of the $Z$-function along the critical line