Properties

Label 2-5220-145.144-c1-0-68
Degree $2$
Conductor $5220$
Sign $-0.974 + 0.226i$
Analytic cond. $41.6819$
Root an. cond. $6.45615$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.90 + 1.17i)5-s − 3.55i·7-s − 5.36i·11-s − 5.98i·13-s + 2.77·17-s − 6.96i·19-s − 1.07i·23-s + (2.25 − 4.46i)25-s + (5.10 + 1.70i)29-s + 1.76i·31-s + (4.16 + 6.77i)35-s − 9.65·37-s − 6.14i·41-s − 6.11·43-s + 10.2·47-s + ⋯
L(s)  = 1  + (−0.851 + 0.524i)5-s − 1.34i·7-s − 1.61i·11-s − 1.65i·13-s + 0.673·17-s − 1.59i·19-s − 0.223i·23-s + (0.450 − 0.892i)25-s + (0.948 + 0.317i)29-s + 0.317i·31-s + (0.704 + 1.14i)35-s − 1.58·37-s − 0.959i·41-s − 0.932·43-s + 1.49·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.974 + 0.226i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.974 + 0.226i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5220\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 29\)
Sign: $-0.974 + 0.226i$
Analytic conductor: \(41.6819\)
Root analytic conductor: \(6.45615\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5220} (289, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5220,\ (\ :1/2),\ -0.974 + 0.226i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.239181532\)
\(L(\frac12)\) \(\approx\) \(1.239181532\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (1.90 - 1.17i)T \)
29 \( 1 + (-5.10 - 1.70i)T \)
good7 \( 1 + 3.55iT - 7T^{2} \)
11 \( 1 + 5.36iT - 11T^{2} \)
13 \( 1 + 5.98iT - 13T^{2} \)
17 \( 1 - 2.77T + 17T^{2} \)
19 \( 1 + 6.96iT - 19T^{2} \)
23 \( 1 + 1.07iT - 23T^{2} \)
31 \( 1 - 1.76iT - 31T^{2} \)
37 \( 1 + 9.65T + 37T^{2} \)
41 \( 1 + 6.14iT - 41T^{2} \)
43 \( 1 + 6.11T + 43T^{2} \)
47 \( 1 - 10.2T + 47T^{2} \)
53 \( 1 - 3.34iT - 53T^{2} \)
59 \( 1 + 11.1T + 59T^{2} \)
61 \( 1 - 11.7iT - 61T^{2} \)
67 \( 1 - 0.517iT - 67T^{2} \)
71 \( 1 - 2.84T + 71T^{2} \)
73 \( 1 - 14.3T + 73T^{2} \)
79 \( 1 + 6.96iT - 79T^{2} \)
83 \( 1 + 11.2iT - 83T^{2} \)
89 \( 1 - 13.3iT - 89T^{2} \)
97 \( 1 + 2.54T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.86364133528684013331699797417, −7.18063263171869459955035553608, −6.65391640827089406807314568528, −5.67056546014295668982436899597, −4.93417802055662304507727286822, −3.96142249597846163586509378014, −3.25855600224596188966853434118, −2.86282176397831718008732319818, −0.911691057762486154273705207667, −0.42053470256387440560756857832, 1.55898361906359674651140802418, 2.11894542499428418699359531102, 3.36585513864275196144474236577, 4.19040549685535532726946730663, 4.83315182315744634267054188252, 5.52206406642496367314870632339, 6.47289666317760319119873945123, 7.10764870556792100734326892496, 7.986084536263201435872468475320, 8.403953012753762955641269948277

Graph of the $Z$-function along the critical line