Properties

Label 2-5220-145.144-c1-0-43
Degree $2$
Conductor $5220$
Sign $0.634 + 0.772i$
Analytic cond. $41.6819$
Root an. cond. $6.45615$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.72 − 1.41i)5-s − 0.510i·7-s − 4.78i·11-s − 0.760i·13-s + 4.91·17-s + 5.44i·19-s + 4.00i·23-s + (0.973 + 4.90i)25-s + (5.28 + 1.04i)29-s + 2.99i·31-s + (−0.724 + 0.881i)35-s + 4.18·37-s − 0.105i·41-s − 5.29·43-s + 7.39·47-s + ⋯
L(s)  = 1  + (−0.772 − 0.634i)5-s − 0.192i·7-s − 1.44i·11-s − 0.210i·13-s + 1.19·17-s + 1.24i·19-s + 0.834i·23-s + (0.194 + 0.980i)25-s + (0.980 + 0.194i)29-s + 0.538i·31-s + (−0.122 + 0.149i)35-s + 0.687·37-s − 0.0164i·41-s − 0.808·43-s + 1.07·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.634 + 0.772i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.634 + 0.772i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5220\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 29\)
Sign: $0.634 + 0.772i$
Analytic conductor: \(41.6819\)
Root analytic conductor: \(6.45615\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5220} (289, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5220,\ (\ :1/2),\ 0.634 + 0.772i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.667986174\)
\(L(\frac12)\) \(\approx\) \(1.667986174\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (1.72 + 1.41i)T \)
29 \( 1 + (-5.28 - 1.04i)T \)
good7 \( 1 + 0.510iT - 7T^{2} \)
11 \( 1 + 4.78iT - 11T^{2} \)
13 \( 1 + 0.760iT - 13T^{2} \)
17 \( 1 - 4.91T + 17T^{2} \)
19 \( 1 - 5.44iT - 19T^{2} \)
23 \( 1 - 4.00iT - 23T^{2} \)
31 \( 1 - 2.99iT - 31T^{2} \)
37 \( 1 - 4.18T + 37T^{2} \)
41 \( 1 + 0.105iT - 41T^{2} \)
43 \( 1 + 5.29T + 43T^{2} \)
47 \( 1 - 7.39T + 47T^{2} \)
53 \( 1 - 0.287iT - 53T^{2} \)
59 \( 1 + 4.33T + 59T^{2} \)
61 \( 1 + 8.10iT - 61T^{2} \)
67 \( 1 - 9.29iT - 67T^{2} \)
71 \( 1 - 15.1T + 71T^{2} \)
73 \( 1 - 1.25T + 73T^{2} \)
79 \( 1 - 3.55iT - 79T^{2} \)
83 \( 1 + 14.9iT - 83T^{2} \)
89 \( 1 - 5.54iT - 89T^{2} \)
97 \( 1 + 9.93T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.111628849932777469954351011229, −7.63754952370160354938471090520, −6.70148422197231688904453624494, −5.69471669453586742261350529202, −5.39672078604891594123056406900, −4.28758675317331685269318941890, −3.55520750840486044774059656671, −3.02944779670441037219630936017, −1.43983953503553695409704082536, −0.66512246049061704109467901817, 0.807429933108417654414449598305, 2.26659029281315447122593525201, 2.85053150694533390624152669560, 3.92876663135952775709081873566, 4.54175702203353544542980129528, 5.27773719015834973261018415892, 6.40127177841212398391096668345, 6.89105780111517101330584341375, 7.59514141459287667677755841469, 8.107082955582424508222340623216

Graph of the $Z$-function along the critical line