| L(s) = 1 | + (−0.623 − 0.781i)2-s + (−0.222 + 0.974i)4-s + (2.02 + 2.53i)5-s + (0.524 + 2.29i)7-s + (0.900 − 0.433i)8-s + (0.722 − 3.16i)10-s + (−3.42 − 1.64i)11-s + (3.69 + 1.77i)13-s + (1.46 − 1.84i)14-s + (−0.900 − 0.433i)16-s − 7.38·17-s + (−1.85 + 8.10i)19-s + (−2.92 + 1.40i)20-s + (0.846 + 3.70i)22-s + (1.86 − 2.33i)23-s + ⋯ |
| L(s) = 1 | + (−0.440 − 0.552i)2-s + (−0.111 + 0.487i)4-s + (0.905 + 1.13i)5-s + (0.198 + 0.868i)7-s + (0.318 − 0.153i)8-s + (0.228 − 1.00i)10-s + (−1.03 − 0.497i)11-s + (1.02 + 0.493i)13-s + (0.392 − 0.492i)14-s + (−0.225 − 0.108i)16-s − 1.79·17-s + (−0.424 + 1.86i)19-s + (−0.654 + 0.315i)20-s + (0.180 + 0.790i)22-s + (0.388 − 0.487i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 522 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.434 - 0.900i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 522 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.434 - 0.900i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.978354 + 0.614446i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.978354 + 0.614446i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.623 + 0.781i)T \) |
| 3 | \( 1 \) |
| 29 | \( 1 + (1.65 - 5.12i)T \) |
| good | 5 | \( 1 + (-2.02 - 2.53i)T + (-1.11 + 4.87i)T^{2} \) |
| 7 | \( 1 + (-0.524 - 2.29i)T + (-6.30 + 3.03i)T^{2} \) |
| 11 | \( 1 + (3.42 + 1.64i)T + (6.85 + 8.60i)T^{2} \) |
| 13 | \( 1 + (-3.69 - 1.77i)T + (8.10 + 10.1i)T^{2} \) |
| 17 | \( 1 + 7.38T + 17T^{2} \) |
| 19 | \( 1 + (1.85 - 8.10i)T + (-17.1 - 8.24i)T^{2} \) |
| 23 | \( 1 + (-1.86 + 2.33i)T + (-5.11 - 22.4i)T^{2} \) |
| 31 | \( 1 + (3.92 + 4.92i)T + (-6.89 + 30.2i)T^{2} \) |
| 37 | \( 1 + (-10.0 + 4.86i)T + (23.0 - 28.9i)T^{2} \) |
| 41 | \( 1 - 9.70T + 41T^{2} \) |
| 43 | \( 1 + (1 - 1.25i)T + (-9.56 - 41.9i)T^{2} \) |
| 47 | \( 1 + (-0.554 - 0.267i)T + (29.3 + 36.7i)T^{2} \) |
| 53 | \( 1 + (-2.10 - 2.64i)T + (-11.7 + 51.6i)T^{2} \) |
| 59 | \( 1 - 4.59T + 59T^{2} \) |
| 61 | \( 1 + (-1.51 - 6.64i)T + (-54.9 + 26.4i)T^{2} \) |
| 67 | \( 1 + (10.2 - 4.93i)T + (41.7 - 52.3i)T^{2} \) |
| 71 | \( 1 + (-1.44 - 0.695i)T + (44.2 + 55.5i)T^{2} \) |
| 73 | \( 1 + (2.21 - 2.77i)T + (-16.2 - 71.1i)T^{2} \) |
| 79 | \( 1 + (-11.7 + 5.63i)T + (49.2 - 61.7i)T^{2} \) |
| 83 | \( 1 + (-1.55 + 6.83i)T + (-74.7 - 36.0i)T^{2} \) |
| 89 | \( 1 + (2.35 + 2.95i)T + (-19.8 + 86.7i)T^{2} \) |
| 97 | \( 1 + (-2.00 + 8.78i)T + (-87.3 - 42.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.87035581650972179645764841528, −10.39956524278262650918567526391, −9.236154212223788538839929532165, −8.626701151401999720763838520405, −7.53648280647009942511641288700, −6.27286077784589386146254374743, −5.74880767178454121094242387739, −4.06782714312450032154975345324, −2.69739902363766771889467831457, −2.00328907623305157052326636524,
0.78364208134152709725964072594, 2.28374952310875488764899959020, 4.40013151265473375230316712563, 5.06044902362176423991197167543, 6.13871771247122304570921565336, 7.11462949970411685418884061269, 8.123672182414108392520425591859, 8.974903068954495603718130953635, 9.551618823478830301929180154257, 10.72116244201535316733115218199